Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
631
result(s) for
"Tumor Protein p73"
Sort by:
Transcription factor p73 regulates Th1 differentiation
2020
Inter-individual differences in T helper (Th) cell responses affect susceptibility to infectious, allergic and autoimmune diseases. To identify factors contributing to these response differences, here we analyze in vitro differentiated Th1 cells from 16 inbred mouse strains. Haplotype-based computational genetic analysis indicates that the p53 family protein, p73, affects Th1 differentiation. In cells differentiated under Th1 conditions in vitro, p73 negatively regulates IFNγ production. p73 binds within, or upstream of, and modulates the expression of Th1 differentiation-related genes such as
Ifng
and
Il12rb2
. Furthermore, in mouse experimental autoimmune encephalitis, p73-deficient mice have increased IFNγ production and less disease severity, whereas in an adoptive transfer model of inflammatory bowel disease, transfer of p73-deficient naïve CD4
+
T cells increases Th1 responses and augments disease severity. Our results thus identify p73 as a negative regulator of the Th1 immune response, suggesting that p73 dysregulation may contribute to susceptibility to autoimmune disease.
Heterogeneous helper T (Th) cell responses contribute to differential susceptibility to immunological disorders. Here the authors perform haplotype-based computational screens of 16 inbred mouse strains to identify a transcription factor, p73, as an important negative regulator of Th1 differentiation, with p73 deficient mice manifesting alterations in two inflammatory disease models.
Journal Article
Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism
2018
The p53 family of transcription factors (p53, p63 and p73) covers a wide range of functions critical for development, homeostasis and health of mammals across their lifespan. Beside the well-established tumor suppressor role, recent evidence has highlighted novel non-oncogenic functions exerted by p73. In particular, p73 is required for multiciliated cell (MCC) differentiation; MCCs have critical roles in brain and airways to move fluids across epithelial surfaces and to transport germ cells in the reproductive tract. This novel function of p73 provides a unifying cellular mechanism for the disparate inflammatory and immunological phenotypes of p73-deficient mice. Indeed, mice with
Trp73
deficiency suffer from hydrocephalus, sterility and chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance since MCCs are essential for cleaning airways from inhaled pollutants, pathogens and allergens. Cross-species genomic analyses and functional rescue experiments identify TAp73 as the master transcriptional integrator of ciliogenesis, upstream of previously known central nodes. In addition, TAp73 shows a significant ability to regulate cellular metabolism and energy production through direct transcriptional regulation of several metabolic enzymes, such as glutaminase-2 and glucose-6 phosphate dehydrogenase. This recently uncovered role of TAp73 in the regulation of cellular metabolism strongly affects oxidative balance, thus potentially influencing all the biological aspects associated with p73 function, including development, homeostasis and cancer. Although through different mechanisms, p63 isoforms also contribute to regulation of cellular metabolism, thus indicating a common route used by all family members to control cell fate. At the structural level, the complexity of p73's function is further enhanced by its ability to form heterotetramers with some p63 isoforms, thus indicating the existence of an intrafamily crosstalk that determines the global outcome of p53 family function. In this review, we have tried to summarize all the recent evidence that have emerged on the novel non-oncogenic roles of p73, in an attempt to provide a unified view of the complex function of this gene within its family.
Journal Article
The specific seroreactivity to ∆Np73 isoforms shows higher diagnostic ability in colorectal cancer patients than the canonical p73 protein
by
Garranzo-Asensio, María
,
Fernández-Aceñero, María Jesús
,
Barderas, Rodrigo
in
38/77
,
631/67/1857
,
692/4028/67/1857
2019
The p53-family is tightly regulated at transcriptional level. Due to alternative splicing, up to 40 different theoretical proteoforms have been described for p73 and at least 20 and 10 for p53 and p63, respectively. However, only the canonical proteins have been evaluated as autoantibody targets in cancer patients for diagnosis. In this study, we have cloned and expressed
in vitro
the most upregulated proteoforms of p73, ΔNp73α and ΔNp73β, for the analysis of their seroreactivity by a developed luminescence based immunoassay test using 145 individual plasma from colorectal cancer, premalignant individuals and healthy controls. ∆Np73α seroreactivity showed the highest diagnostic ability to discriminate between groups. The combination of ∆Np73α, ∆Np73β and p73 proteoforms seroreactivity were able to improve their individual diagnostic ability. Competitive inhibition experiments further demonstrated the presence of unique specific epitopes in ΔNp73 isoforms not present in p73, with several colorectal patients showing unique and specific seroreactivity to the ΔNp73 proteoforms. Overall, we have increased the complexity of the humoral immune response to the p53-family in cancer patients, showing that the proteoforms derived from the alternative splicing of p73 possess a higher diagnostic ability than the canonical protein, which might be extensive for p53 and p63 proteins.
Journal Article
Harnessing TP73-targeted nintedanib: A novel strategy to halt triple-negative breast cancer via p53-PPARα/PI3K-Akt pathway suppression
2025
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options, leading to poor clinical outcomes and the need for novel therapeutic approaches. Nintedanib, a United States Food and Drug Administration-approved multi-kinase inhibitor with anti-fibrotic and anti-angiogenic properties, has shown promise in cancer treatment. However, its precise molecular effects on TNBC have not yet been fully elucidated. Therefore, the present study aimed to investigate the therapeutic potential of nintedanib in TNBC using in vitro and in vivo models, specifically focusing on its regulatory effects on key oncogenic pathways. The present study utilized TNBC cell lines (MDA-MB-231 and 4T1) and BALB/c mice to evaluate the antitumor efficacy of nintedanib. Cell viability and clonogenic capacity were assessed using Cell Counting Kit-8 and colony formation assays. Subsequently, apoptosis induction and cell cycle progression were determined by flow cytometry, and cell migration and invasion were analyzed through scratch and Transwell assays. To identify underlying mechanisms, potential molecular targets were identified via bioinformatics and network pharmacology, and were validated through western blotting, immunofluorescence and immunohistochemistry. Finally, an orthotopic TNBC mouse model was established and monitored in real time by multimodal ultrasound imaging. The results revealed that nintedanib significantly inhibited TNBC cell proliferation and suppressed stem cell-like properties. Furthermore, it induced cell cycle arrest at the G2/M phase and promoted apoptosis. Mechanistic analysis revealed that nintedanib activated tumor protein p73 (TP73), leading to the disruption of the p53-peroxisome proliferator-activated receptor α (PPARα)/PI3K-Akt signaling axis. Additionally, it downregulated epithelial-mesenchymal transition (EMT) markers, including Snail and zinc finger E-box-binding homeobox protein 1, thereby mitigating tumor invasiveness. In vivo, nintedanib treatment effectively reduced tumor growth, angiogenesis and stiffness, indicating its potential as a viable therapeutic agent for TNBC. In conclusion, nintedanib exerts potent anti-TNBC effects by modulating TP73, disrupting oncogenic signaling via the p53-PPARα/PI3K-Akt axis, and attenuating EMT-associated transcription factors. These findings highlight its potential as a promising targeted therapy for TNBC, warranting further clinical exploration.
Journal Article
The p53 family members have distinct roles during mammalian embryonic development
2017
The p53 tumor suppressor is a member of a multi-protein family, including the p63 and p73 transcription factors. These proteins can bind to the same consensus sites in DNA and activate the same target genes, suggesting that there could be functional redundancy between them. Indeed, double mutant mice heterozygous for any two family member-encoding genes display enhanced cancer phenotypes relative to single heterozygous mutants. However, whether the family members play redundant roles during embryonic development has remained largely unexplored. Although
p53
−/−
; p73
−/−
mice are born and manifest phenotypes characteristic of each of the single mutants, the consequences of combined deficiency of p63 and either p53 or p73 have not been elucidated. To examine the functional overlap of p53 family members during development, we bred and analyzed compound mutant embryo phenotypes. We discovered that double knockout embryos and five allele knockout embryos only displayed obvious defects accounted for by loss of single p53 family members. Surprisingly, at mid-gestation (E11), we identified a single viable triple knockout embryo that appeared grossly normal. Together, these results suggest that the p53 family is not absolutely required for early embryogenesis and that p53 family members are largely non-redundant during early development.
Journal Article
CBFB cooperates with p53 to maintain TAp73 expression and suppress breast cancer
2021
The CBFB gene is frequently mutated in several types of solid tumors. Emerging evidence suggests that CBFB is a tumor suppressor in breast cancer. However, our understanding of the tumor suppressive function of CBFB remains incomplete. Here, we analyze genetic interactions between mutations of CBFB and other highly mutated genes in human breast cancer datasets and find that CBFB and TP53 mutations are mutually exclusive, suggesting a functional association between CBFB and p53. Integrated genomic studies reveal that TAp73 is a common transcriptional target of CBFB and p53. CBFB cooperates with p53 to maintain TAp73 expression, as either CBFB or p53 loss leads to TAp73 depletion. TAp73 re-expression abrogates the tumorigenic effect of CBFB deletion. Although TAp73 loss alone is insufficient for tumorigenesis, it enhances the tumorigenic effect of NOTCH3 overexpression, a downstream event of CBFB loss. Immunohistochemistry shows that p73 loss is coupled with higher proliferation in xenografts. Moreover, TAp73 loss-of-expression is a frequent event in human breast cancer tumors and cell lines. Together, our results significantly advance our understanding of the tumor suppressive functions of CBFB and reveal a mechanism underlying the communication between the two tumor suppressors CBFB and p53.
Journal Article
A novel TAp73‐inhibitory compound counteracts stemness features of glioblastoma stem cells
by
Villoch‐Fernandez, Javier
,
Fernandez, Antonio
,
Maeso‐Alonso, Laura
in
Animals
,
Brain Cancer
,
Brain Neoplasms - drug therapy
2025
Glioblastoma (GB) is the most common and fatal type of primary malignant brain tumor for which effective therapeutics are still lacking. GB stem cells, with tumor‐initiating and self‐renewal capacity, are mostly responsible for GB malignancy, representing a crucial target for therapies. The TP73 gene, which is highly expressed in GB, gives rise to the TAp73 isoform, a pleiotropic protein that regulates neural stem cell biology; however, its role in cancer has been highly controversial. We inactivated TP73 in human GB stem cells and revealed that TAp73 is required for their stemness potential, acting as a regulator of the transcriptional stemness signatures, highlighting TAp73 as a possible therapeutic target. As proof of concept, we identified a novel natural compound with TAp73‐inhibitory capacity, which was highly effective against GB stem cells. The treatment reduced GB stem cell‐invasion capacity and stem features, at least in part by TAp73 repression. Our data are consistent with a novel paradigm in which hijacking of p73‐regulated neurodevelopmental programs, including neural stemness, might sustain tumor progression, pointing out TAp73 as a therapeutic strategy for GB. In glioblastoma (GB) tumors, a dynamic population of cancer stem cells (CSCs) drives tumor initiation, resistance, and recurrence. In this work, we demonstrated that TAp73 is crucial to sustain CSC features. We identified a TAp73‐repressive natural compound (BMT9) that impairs key GB stem cell properties. Together, our results postulate TP73 as an interesting therapeutic target, particularly in advanced tumor stages.
Journal Article
Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis
2017
The p53 family member p73 plays a critical role in brain development. p73 knockout mice exhibit a number of deficits in the nervous system, such as neuronal death, hydrocephalus, hippocampal dysgenesis, and pheromonal defects. Among these phenotypes, the mechanisms of hydrocephalus remain unknown. In this study, we generated a p73 knock-in (KI) mutant mouse and a conditional p73 knockout mouse. The homozygous KI mutants showed aqueductal stenosis. p73 was expressed in the ependymal cell layer and several brain areas. Unexpectedly, when p73 was disrupted during the postnatal period, animals showed aqueductal stenosis at a later stage but not hydrocephalus. An assessment of the integrity of cilia and basal body (BB) patch formation suggests that p73 is required to establish translational polarity but not to establish rotational polarity or the planar polarization of BB patches. Deletion of p73 in adult ependymal cells did not affect the maintenance of translational polarity. These results suggest that the loss of p73 during the embryonic period is critical for hydrocephalus development.
Journal Article
MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53
2021
The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2–Murine Double Minute X (MDM2–MDMX) heterodimer. The role of MDM2–MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumorderived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.
Journal Article
Emerging Roles of p53 Family Members in Glucose Metabolism
2018
Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.
Journal Article