Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
4,619
result(s) for
"Tumor Suppressor Protein p53 - drug effects"
Sort by:
The genetics of the p53 pathway, apoptosis and cancer therapy
by
Vazquez, Alexei
,
Levine, Arnold J.
,
Bond, Elisabeth E.
in
Animals
,
Antineoplastic Agents - therapeutic use
,
Apoptosis
2008
The p53 tumour suppressor pathway is an attractive target for the development of anticancer therapies. This Perspective highlights recent progress with agents that modulate components of the p53 pathway — in particular, p53 itself and its negative regulator MDM2 — focusing on how studies of their genetic variations, including mutations in cancer cells and inherited polymorphisms, could help tailor the use of existing agents and aid the development of novel drugs.
The p53 pathway has been shown to mediate cellular stress responses; p53 can initiate DNA repair, cell-cycle arrest, senescence and, importantly, apoptosis. These responses have been implicated in an individual's ability to suppress tumour formation and to respond to many types of cancer therapy. Here we focus on how best to use knowledge of this pathway to tailor current therapies and develop novel ones. Studies of the genetics of p53 pathway components — in particular p53 itself and its negative regulator MDM2 — in cancer cells has proven useful in the development of targeted therapies. Furthermore, inherited single nucleotide polymorphisms in p53 pathway genes could serve a similar purpose.
Journal Article
Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia
2019
The negative regulator of p53, MDM2, is frequently overexpressed in acute myeloid leukemia (AML) that retains wild-type
TP53
alleles. Targeting of p53-MDM2 interaction to reactivate p53 function is therefore an attractive therapeutic approach for AML. Here we show that an orally active inhibitor of p53-MDM2 interaction, DS-5272, causes dramatic tumor regressions of MLL-AF9-driven AML in vivo with a tolerable toxicity. However, the antileukemia effect of DS-5272 is markedly attenuated in immunodeficient mice, indicating the critical impact of systemic immune responses that drive p53-mediated leukemia suppression. In relation to this, DS-5272 triggers immune-inflammatory responses in MLL-AF9 cells including upregulation of Hif1α and PD-L1, and inhibition of the Hif1α-PD-L1 axis sensitizes AML cells to p53 activation. We also found that NK cells are important mediators of antileukemia immunity. Our study showed the potent activity of a p53-activating drug against AML, which is further augmented by antitumor immunity.
MDM2 is frequently overexpressed in acute myeloid leukaemia leading to p53 inactivation. Here, the authors are demonstrating that an inhibitor of p53-MDM2 interaction, DS-5272, induce in vivo tumour regression through immune response regulation.
Journal Article
Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs
by
Recordati, Camilla
,
Maggi, Adriana
,
Vantaggiato, Cristina
in
631/154/309/2420
,
631/154/555
,
631/67/1347
2019
Background
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application.
Methods
Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs.
Results
Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism. We demonstrate these NSAIDs counteract carcinogen-induced proliferation by inhibiting the sirtuin 1 (SIRT1) deacetylase activity, augmenting acetylation and activity of the tumour suppressor p53 and increasing the expression of the antiproliferative gene p21. These properties are shared by all NSAIDs except for ketoprofen lacking anti-cancer properties. The clinical interest of the mechanism identified is underlined by our finding that p53 is activated in mastectomy patients undergoing intraoperative ketorolac, a treatment associated with decreased relapse risk and increased survival.
Conclusion
Our study, for the first-time, links NSAID chemopreventive activity with direct SIRT1 inhibition and activation of the p53/p21 anti-oncogenic pathway, suggesting a novel strategy for the design of tumour-protective drugs.
Journal Article
Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells
by
Rady, Islam
,
Rady, Mohamad I.
,
El-Wetidy, Mohammad S.
in
Anticancer properties
,
Antineoplastic Agents - pharmacology
,
Apoptosis
2021
Colorectal cancer (CRC) is the second most common gastrointestinal cancer globally. Prevention of tumor cell proliferation and metastasis is vital for prolonging patient survival. Polyphenols provide a wide range of health benefits and prevention from cancer. In the gut, urolithins are the major metabolites of polyphenols. The objective of our study was to elucidate the molecular mechanism of the anticancer effect of urolithin A (UA) on colorectal cancer cells. UA was found to inhibit the cell proliferation of CRC cell lines in a dose-dependent and time-dependent manner in HT29, SW480, and SW620 cells. Exposure to UA resulted in cell cycle arrest in a dose-dependent manner along with alteration in the expression of cell cycle–related protein. Treatment of CRC cell lines with UA resulted in the induction of apoptosis. Treatment of HT29, SW480, and SW620 with UA resulted in increased expression of the pro-apoptotic proteins, p53 and p21. Similarly, UA treatment inhibited the anti-apoptotic protein expression of Bcl-2. Moreover, exposure of UA induced cytochrome c release and caspase activation. Furthermore, UA was found to generate reactive oxygen species (ROS) production in CRC cells. These findings indicate that UA possesses anticancer potential and may be used therapeutically for the treatment of CRC.
Journal Article
Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network
2013
Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug’s efficacy have been contradictory. Using
in vitro
culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of
Trp63
, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles and perhaps conserve the endocrine function of the ovary against chemotherapy.
Journal Article
Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence
by
Hulley, Philippa A
,
Watts, Anna C
,
Murphy, Richard J
in
Adult
,
Aged
,
Basic and Translational Research
2014
Cellular senescence is an irreversible side effect of some pharmaceuticals which can contribute to tissue degeneration. Objective To determine whether pharmaceutical glucocorticoids induce senescence in tenocytes. Methods Features of senescence (β-galactosidase activity at pH 6 (SA-β-gal) and active mammalian/mechanistic target of rapamycin (mTOR) in cell cycle arrest) as well as the activity of the two main pathways leading to cell senescence were examined in glucocorticoid-treated primary human tenocytes. Evidence of senescence-inducing pathway induction in vivo was obtained using immunohistochemistry on tendon biopsy specimens taken before and 7 weeks after subacromial Depo-Medrone injection. Results Dexamethasone treatment of tenocytes resulted in an increased percentage of SA-βgal-positive cells. Levels of phosphorylated p70S6K did not decrease with glucocorticoid treatment indicating mTOR remained active. Increased levels of acetylated p53 as well as increased RNA levels of its pro-senescence effector p21 were evident in dexamethasone-treated tenocytes. Levels of the p53 deacetylase sirtuin 1 were lower in dexamethasone-treated cells compared with controls. Knockdown of p53 or inhibition of p53 activity prevented dexamethasone-induced senescence. Activation of sirtuin 1 either by exogenous overexpression or by treatment with resveratrol or low glucose prevented dexamethasone-induced senescence. Immunohistochemical analysis of tendon biopsies taken before and after glucocorticoid injection revealed a significant increase in the percentage of p53-positive cells (p=0.03). The percentage of p21-positive cells also tended to be higher post-injection (p=0.06) suggesting glucocorticoids activate the p53/p21 senescence-inducing pathway in vivo as well as in vitro. Conclusion As cell senescence is irreversible in vivo, glucocorticoid-induced senescence may result in long-term degenerative changes in tendon tissue.
Journal Article
Piperine-coated zinc oxide nanoparticles target biofilms and induce oral cancer apoptosis via BCl-2/BAX/P53 pathway
by
Shah, Mohd Asif
,
Khan, Haroon
,
Mallik, Saurav
in
Alkaloids
,
Alkaloids - pharmacology
,
Antibiotic resistance
2024
Background
Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations.
Methods
We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells.
Results
ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53.
Conclusions
This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.
Journal Article
Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway
2022
Myocardial fibrosis following acute myocardial infarction (AMI) seriously affects the prognosis and survival rate of patients. This study explores the role and regulation mechanism of storax, a commonly used traditional Chinese medicine for treatment of cardiovascular diseases, on myocardial fibrosis and cardiac function. The AMI rat model was established by subcutaneous injection of Isoproterenol hydrochloride (ISO). Storax (0.1, 0.2, 0.4 g/kg) was administered by gavage once/d for 7 days. Electrocardiogram, echocardiography, hemodynamic and cardiac enzyme in AMI rats were measured. HE, Masson, immunofluorescence and TUNEL staining were used to observe the degree of pathological damage, fibrosis and cardiomyocyte apoptosis in myocardial tissue, respectively. Expression of AT1R, CARP and their downstream related apoptotic proteins were detected by WB. The results demonstrated that storax could significantly improve cardiac electrophysiology and function, decrease serum cardiac enzyme activity, reduce type I and III collagen contents to improve fibrosis and alleviate myocardial pathological damage and cardiomyocyte apoptosis. It also found that storax can significantly down-regulate expression of AT1R, Ankrd1, P53, P-p53 (ser 15), Bax and cleaved Caspase-3 and up-regulate expression of Mdm2 and Bcl-2. Taken together, these findings indicated that storax effectively protected cardiomyocytes against myocardial fibrosis and cardiac dysfunction by inhibiting the AT1R–Ankrd1–P53 signaling pathway.
Journal Article
Novel l,2,4triazolo3,4-aisoquinoline chalcones as new chemotherapeutic agents: Block IAP tyrosine kinase domain and induce both intrinsic and extrinsic pathways of apoptosis
by
Ibrahim, Somia S
,
Abdelhamid, Ismail A
,
Mohamed, Magda F
in
Apoptosis
,
Biotechnology
,
Cell cycle
2021
SummaryTwo novel chemotherapeutic chalcones were synthesized and their structures were confirmed by different spectral tools. Theoretical studies such as molecular modeling were done to detect the mechanism of action of these compounds. In vitro cytotoxicity showed a strong effect against all tested cell lines (MCF7, A459, HepG2, and HCT116), and low toxic effect against normal human melanocytes (HFB4). The lung carcinoma cell line was chosen for further molecular studies. Real-time PCR demonstrated that the two compounds upregulated gene expression of (BAX, p53, casp-3, casp-8, casp-9) genes and decreased the expression of anti-apoptotic genes bcl2, CDK4, and MMP1. Flow-cytometry indicated that cell cycle arrest of A459 was induced at the G2/M phase and the apoptotic percentage increased significantly compared to the control sample. Cytochrome c oxidase and VEGF enzyme activity were detected by ELISA assay. SEM tool was used to follow the morphological changes that occurred on the cell surface, cell granulation, and average roughness of the cell surface. The change in the number and morphology of mitochondria, cell shrinkage, increase in the number of cytoplasmic organelles, membrane blebbing, chromatin condensation, and apoptotic bodies were observed using TEM. The obtained data suggested that new chalcones exerted their pathways on lung carcinoma through induction of two pathways of apoptosis.
Journal Article
Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1
2007
MDM2 is a critical negative regulator of the p53 tumor suppressor protein. Recently, small-molecule antagonists of MDM2, the Nutlins, have been developed to inhibit the p53-MDM2 interaction and activate p53 signaling. However, half of human cancers have mutated p53 and they are resistant to Nutlin treatment. Here, we report that treatment of the p53-mutant malignant peripheral nerve sheath (MPNST) and p53-null HCT116 cells with cisplatin (Cis) and Nutlin-3a induced a degree of apoptosis that was significantly greater than either drug alone. Nutlin-3a also increased the cytotoxicity of both carboplatin and doxorubicin in a series of p53-mutant human tumor cell lines. In the human dedifferentiated liposarcoma cell line (LS141) and the p53 wild-type HCT116 cells, Nutlin-3a induced downregulation of E2F1 and this effect appeared to be proteasome dependent. In contrast, in MPNST and HCTp53−/− cells, Nutlin-3a inhibited the binding of E2F1 to MDM2 and induced transcriptional activation of free E2F1 in the presence of Cis-induced DNA damage. Downregulation of E2F1 by small interfering RNA significantly decreased the level of apoptosis induced by Cis and Nutlin-3a treatment. Moreover, expression of a dominant-negative form of E2F1 rescued cells from apoptosis, whereas cells overexpressing wild-type E2F1 showed an increase in cell death. This correlated with the induction of the proapoptotic proteins p73
α
and Noxa, which are both regulated by E2F1. These results indicate that antagonism of MDM2 by Nutlin-3a in cells with mutant p53 enhances chemosensitivity in an E2F1-dependent manner. Nutlin-3a therefore may provide a therapeutic benefit in tumors with mutant p53 provided it is combined with chemotherapy.
Journal Article