Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
7,380
result(s) for
"Tumor Suppressor Proteins - drug effects"
Sort by:
Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1
2007
MDM2 is a critical negative regulator of the p53 tumor suppressor protein. Recently, small-molecule antagonists of MDM2, the Nutlins, have been developed to inhibit the p53-MDM2 interaction and activate p53 signaling. However, half of human cancers have mutated p53 and they are resistant to Nutlin treatment. Here, we report that treatment of the p53-mutant malignant peripheral nerve sheath (MPNST) and p53-null HCT116 cells with cisplatin (Cis) and Nutlin-3a induced a degree of apoptosis that was significantly greater than either drug alone. Nutlin-3a also increased the cytotoxicity of both carboplatin and doxorubicin in a series of p53-mutant human tumor cell lines. In the human dedifferentiated liposarcoma cell line (LS141) and the p53 wild-type HCT116 cells, Nutlin-3a induced downregulation of E2F1 and this effect appeared to be proteasome dependent. In contrast, in MPNST and HCTp53−/− cells, Nutlin-3a inhibited the binding of E2F1 to MDM2 and induced transcriptional activation of free E2F1 in the presence of Cis-induced DNA damage. Downregulation of E2F1 by small interfering RNA significantly decreased the level of apoptosis induced by Cis and Nutlin-3a treatment. Moreover, expression of a dominant-negative form of E2F1 rescued cells from apoptosis, whereas cells overexpressing wild-type E2F1 showed an increase in cell death. This correlated with the induction of the proapoptotic proteins p73
α
and Noxa, which are both regulated by E2F1. These results indicate that antagonism of MDM2 by Nutlin-3a in cells with mutant p53 enhances chemosensitivity in an E2F1-dependent manner. Nutlin-3a therefore may provide a therapeutic benefit in tumors with mutant p53 provided it is combined with chemotherapy.
Journal Article
Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma
by
Wu, Jing
,
Zhang, Jianning
,
Liu, Weiping
in
Analysis of Variance
,
Antineoplastic Agents - pharmacology
,
Brain Neoplasms - drug therapy
2007
Gliomas are the most common and lethal primary tumors of the central nervous system (CNS). Despite current rigorous treatment protocols, effect of chemotherapy has failed to improve patient outcome significantly. Curcumin is a potent antioxidant that possesses both anti-inflammatory and anti-tumor activities, can suppress the initiation, promotion, and metastasis of different tumors. Its anti-tumor properties in various cancer models and negligible toxicity in normal cells make it a promising chemotherapeutic candidate. But the effect and the molecular mechanism of curcumin on gliomas are still recognized limitedly. The goal of the study is to elucidate the inhibitory effect and possible mechanisms of curcumin on glioma. After the treatment of curcumin, glioma cells U251 growth in vitro were significantly inhibited in a dose-dependent manner, and the low dose of curcumin induced G2/M cell cycle arrest. The high dose of curcumin not only enhanced G2/M cell cycle arrest, but also induced S phase of cell cycle arrest. But no obvious pre-G1 peak was observed at the different doses of curcumin. Genome DNA electrophoresis further confirmed that no DNA ladder was formed after the treatment of curcumin in U251 cells. Results of Western blot analysis demonstrated that ING4 expression was almost undetectable in U251 cells, but significantly up-regulated during cell cycle arrest induced by curcumin, and p53 expression was up-regulated followed by induction of p21 WAF-1/CIP-1 and ING4. The results demonstrate that curcumin exerts inhibitory action on glioma cell growth and proliferation via induction of cell cycle arrest instead of induction of apoptosis in a p53-dependent manner, and ING4 possibly is in part involved in the signal pathways.
Journal Article
Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment
by
Chen, Xiaoliang
,
Wu, Anguo
,
Tian, Ye
in
Alzheimer's disease
,
Anticancer properties
,
Antineoplastic Agents - pharmacology
2021
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Journal Article
Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells
by
Batra, S
,
Srivastava, S K
,
Sahu, R P
in
Apoptosis - drug effects
,
Ataxia Telangiectasia Mutated Proteins
,
Biomedical and Life Sciences
2009
Curcumin has been shown to inhibit the growth of various types of cancer cells; however, at concentrations much above the clinically achievable levels in humans. The concentration of curcumin achieved in the plasma after oral administration in humans was estimated to be around 1.8
μ
M
. Here, we report that treatment of BxPC-3 human pancreatic cancer cells with a low and single exposure of 2.5
μ
M
curcumin for 24 h causes significant arrest of cells in the G2/M phase and induces significant apoptosis. Immunoblot studies revealed increased phosphorylation of H2A.X at Ser-139 and Chk1 at Ser-280 and a decrease in DNA polymerase-
β
level in curcumin-treated cells. Phosphorylation of H2A.X and Chk1 proteins are an indicator of DNA damage whereas DNA polymerase-
β
plays a role in the repair of DNA strand breaks. Normal immortalised human pancreatic ductal epithelial (HPDE-6) cells remained unaffected by curcumin treatment. In addition, we also observed a significant increase in the phosphorylation of Chk1 at Ser-345, Cdc25C at Ser-216 and a subtle increase in ATM phosphorylation at Ser-1981. Concomitant decrease in the expressions of cyclin B1 and Cdk1 were seen in curcumin-treated cells. Further, curcumin treatment caused significant cleavage of caspase-3 and PARP in BxPC-3 but not in HPDE-6 cells. Silencing ATM/Chk1 expression by transfecting BxPC-3 cells with ATM or Chk1-specific SiRNA blocked the phosphorylation of ATM, Chk1 and Cdc25C and protected the cells from curcumin-mediated G2/M arrest and apoptosis. This study reflects the critical role of ATM/Chk1 in curcumin-mediated G2/M cell cycle arrest and apoptosis in pancreatic cancer cells.
Journal Article
Regulation of temozolomide resistance in glioma cells via the RIP2/NF‐κB/MGMT pathway
by
Wang, Cheng‐Ye
,
Hu, Yu‐Hua
,
Jiao, Bao‐Hua
in
Animals
,
Antibodies
,
Antineoplastic Agents, Alkylating - pharmacology
2021
Background Temozolomide (TMZ) is a first‐line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. Receptor‐interacting protein 2 (RIP2) is associated with the malignant character of cancer cells. However, it remains unclear whether RIP2 is involved in TMZ resistance in glioma. Methods RIP2 expression was inhibited in TMZ‐resistant glioma cells and normal glioma cells by using small interfering RNA (siRNA) against RIP2. Plasmid transfection method was used to overexpress RIP2. Cell counting kit‐8 assays were performed to evaluate cell viability. Western blotting or immunofluorescence was performed to determine RIP2, NF‐κB, and MGMT expression in cells. Flow cytometry was used to investigate cell apoptosis. TMZ‐resistant glioma xenograft models were established to evaluate the role of the RIP2/NF‐κB/MGMT signaling pathway in drug resistance. Results We observed that RIP2 expression was upregulated in TMZ‐resistant glioma cells, whereas silencing of RIP2 expression enhanced cellular sensitivity to TMZ. Similarly, upon the induction of RIP2 overexpression, glioma cells developed resistance to TMZ. The molecular mechanism underlying the process indicated that RIP2 can activate the NF‐κB signaling pathway and upregulate the expression of O6‐methylguanine‐DNA methyltransferase (MGMT), following which the glioma cells develop drug resistance. In the TMZ‐resistant glioma xenograft model, treatment with JSH‐23 (an NF‐κB inhibitor) and lomeguatrib (an MGMT inhibitor) could enhance the sensitivity of the transplanted tumor to TMZ. Conclusion We report that the RIP2/NF‐κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF‐κB or MGMT activity could constitute a novel strategy for the treatment of RIP2‐positive TMZ‐resistant glioma. Temozolomide is a first‐line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. An increasing number of studies report that RIP2 is associated with the malignant character of cancer cells. In this study, we report that the RIP2/NF‐κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF‐κB or MGMT activity could constitute a novel strategy for the treatment of RIP2‐positive TMZ‐resistant glioma.
Journal Article
EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas
2017
Although mutant H3K27M histones inhibit PRC2 in diffuse intrinsic pontine gliomas, these tumors exhibit significant amounts of PRC2 activity. The repression of several genes, including
INK4A
, by residual EZH2 activity is required for tumor growth, and EZH2 inhibitors therefore represent potential therapies for these patients.
Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressive complex 2 (PRC2), a multiprotein complex responsible for the methylation of H3 at lysine 27 (H3K27me), by binding to its catalytic subunit EZH2. Although DIPGs with the H3K27M mutation show global loss of H3K27me3, several genes retain H3K27me3. Here we describe a mouse model of DIPG in which H3K27M potentiates tumorigenesis. Using this model and primary patient-derived DIPG cell lines, we show that H3K27M-expressing tumors require PRC2 for proliferation. Furthermore, we demonstrate that small-molecule EZH2 inhibitors abolish tumor cell growth through a mechanism that is dependent on the induction of the tumor-suppressor protein p16
INK4A
. Genome-wide enrichment analyses show that the genes that retain H3K27me3 in H3K27M cells are strong polycomb targets. Furthermore, we find a highly significant overlap between genes that retain H3K27me3 in the DIPG mouse model and in human primary DIPGs expressing H3K27M. Taken together, these results show that residual PRC2 activity is required for the proliferation of H3K27M-expressing DIPGs, and that inhibition of EZH2 is a potential therapeutic strategy for the treatment of these tumors.
Journal Article
Drug Resistance in Glioblastoma: A Mini Review
by
Ray, Swapan K.
,
Smith, Joshua A.
,
Patel, Sunil J.
in
Allyl Compounds - therapeutic use
,
Angiogenesis Inhibitors - therapeutic use
,
ATP-Binding Cassette Transporters - metabolism
2012
Glioblastoma multiforme (GBM) is recognized as the most common and lethal form of central nervous system cancer. Currently used surgical techniques, chemotherapeutic agents, and radiotherapy strategies have done very little in extending the life expectancies of patients diagnosed with GBM. The difficulty in treating this malignant disease lies both in its inherent complexity and numerous mechanisms of drug resistance. In this review, we summarize several of the primary mechanisms of drug resistance. We reviewed available published literature in the English language regarding drug resistance in glioblastoma. The reasons for drug resistance in glioblastoma include drug efflux, hypoxic areas of tumor cells, cancer stem cells, DNA damage repair, and miRNAs. Many potential therapies target these mechanisms, including a series of investigated alternative and plant-derived agents. Future research and clinical trials in glioblastoma patients should pursue combination of therapies to help combat drug resistance. The emerging new data on the potential of plant-derived therapeutics should also be closely considered and further investigated.
Journal Article
The genetics of the p53 pathway, apoptosis and cancer therapy
by
Vazquez, Alexei
,
Levine, Arnold J.
,
Bond, Elisabeth E.
in
Animals
,
Antineoplastic Agents - therapeutic use
,
Apoptosis
2008
The p53 tumour suppressor pathway is an attractive target for the development of anticancer therapies. This Perspective highlights recent progress with agents that modulate components of the p53 pathway — in particular, p53 itself and its negative regulator MDM2 — focusing on how studies of their genetic variations, including mutations in cancer cells and inherited polymorphisms, could help tailor the use of existing agents and aid the development of novel drugs.
The p53 pathway has been shown to mediate cellular stress responses; p53 can initiate DNA repair, cell-cycle arrest, senescence and, importantly, apoptosis. These responses have been implicated in an individual's ability to suppress tumour formation and to respond to many types of cancer therapy. Here we focus on how best to use knowledge of this pathway to tailor current therapies and develop novel ones. Studies of the genetics of p53 pathway components — in particular p53 itself and its negative regulator MDM2 — in cancer cells has proven useful in the development of targeted therapies. Furthermore, inherited single nucleotide polymorphisms in p53 pathway genes could serve a similar purpose.
Journal Article
The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73
by
Shaul, Y
,
Adamovich, Y
,
Reuven, N
in
Adapter proteins
,
Adaptor Proteins, Signal Transducing - metabolism
,
Apoptosis
2007
Upon DNA damage signaling, p73, a member of the p53 tumor suppressor family, accumulates to support transcription of downstream apoptotic genes. p73 interacts with Yes-associated protein 1 (Yap1) through its PPPY motif, and increases p73 transactivation of apoptotic genes. The ubiquitin E3 ligase Itch, like Yap1, interacts with p73. Given the fact that both Itch and Yap1 bind p73 via the PPPY motif, we hypothesized that Yap may also function to stabilize p73 by displacing Itch binding to p73. We show that the interaction of Yap1 and p73 was necessary for p73 stabilization. Yap1 competed with Itch for binding to p73, and prevented Itch-mediated ubiquitination of p73. Treatment of cells with cisplatin leads to an increase in p73 accumulation and induction of apoptosis, but both were dramatically reduced in the presence of Yap1 siRNA. Altogether, our findings attribute a central role to Yap1 in regulating p73 accumulation and function under DNA damage signaling.
Journal Article
Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network
2013
Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug’s efficacy have been contradictory. Using
in vitro
culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of
Trp63
, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles and perhaps conserve the endocrine function of the ovary against chemotherapy.
Journal Article