Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
369
result(s) for
"Tumor immune microenvironment classification"
Sort by:
The establishment of a prognostic scoring model based on the new tumor immune microenvironment classification in acute myeloid leukemia
2021
Background
The high degree of heterogeneity brought great challenges to the diagnosis and treatment of acute myeloid leukemia (AML). Although several different AML prognostic scoring models have been proposed to assess the prognosis of patients, the accuracy still needs to be improved. As important components of the tumor microenvironment, immune cells played important roles in the physiological functions of tumors and had certain research value. Therefore, whether the tumor immune microenvironment (TIME) can be used to assess the prognosis of AML aroused our great interest.
Methods
The patients’ gene expression profile from 7 GEO databases was normalized after removing the batch effect. TIME cell components were explored through Xcell tools and then hierarchically clustered to establish TIME classification. Subsequently, a prognostic model was established by Lasso-Cox. Multiple GEO databases and the Cancer Genome Atlas dataset were employed to validate the prognostic performance of the model. Receiver operating characteristic (ROC) and the concordance index (C-index) were utilized to assess the prognostic efficacy.
Results
After analyzing the composition of TIME cells in AML, we found infiltration of ten types of cells with prognostic significance. Then using hierarchical clustering methods, we established a TIME classification system, which clustered all patients into three groups with distinct prognostic characteristics. Using the differential genes between the first and third groups in the TIME classification, we constructed a 121-gene prognostic model. The model successfully divided 1229 patients into the low and high groups which had obvious differences in prognosis. The high group with shorter overall survival had more patients older than 60 years and more poor-risk patients (both
P
< 0.001). Besides, the model can perform well in multiple datasets and could further stratify the cytogenetically normal AML patients and intermediate-risk AML population. Compared with the European Leukemia Net Risk Stratification System and other AML prognostic models, our model had the highest C-index and the largest AUC of the ROC curve, which demonstrated that our model had the best prognostic efficacy.
Conclusion
A prognostic model for AML based on the TIME classification was constructed in our study, which may provide a new strategy for precision treatment in AML.
Journal Article
Unravelling the Reasons Behind Limited Response to Anti-PD Therapy in ATC: A Comprehensive Evaluation of Tumor-Infiltrating Immune Cells and Checkpoints
2024
Inhibiting the immune checkpoint (ICP) PD-1 based on PD-L1 expression status has revolutionized the treatment of various cancers, yet its efficacy in anaplastic thyroid carcinoma (ATC) remains limited. The therapeutic response depends upon multiple factors, particularly the conduciveness of the tumor’s immune milieu. This study comprehensively evaluated and classified ATC’s immune microenvironment (IME) to elucidate the factors behind suboptimal response to anti-PD therapy. Utilizing multiplex-immunofluorescence and immunohistochemistry, we retrospectively analyzed 26 cases of ATC for expression of ICPs PD-L1, PD-1, CTLA4, TIM3, and Galectin-9 and tumor-infiltrating cytotoxic T lymphocytes (CTL)—the effector cells, the anti-tumor NK cells, the immune-inhibitory myeloid-derived suppressor (MDSC) and regulatory T (Treg) cells, and B lymphocytes. Most ATCs (65%) exhibited PD-L1 positivity, but only 31%, in addition, had abundant CTL (type I IME), a combination associated with a better response to ICP inhibition. Additionally, PD-1 expression levels on CTL were low/absent in most cases—a “target-missing” situation—unfavorable for an adequate therapeutic response. All but one ATC showed nuclear Galectin-9 expression. The documentation of nuclear expression of Galectin-9 akin to benign thyroid is a first, and its role in ATC pathobiology needs further elucidation. In addition to less abundant PD-1 expression on CTL, the presence of MDSC, Treg, and exhausted cytotoxic T lymphocytes in the immune milieu of ATC can contribute to anti-PD resistance. TIM3, the most frequently expressed ICP on CTL, followed by CTLA4, provides alternate therapeutic targets in ATC. The co-expression of multiple immune checkpoints is of great interest for ATC since these data also open the avenue for combination therapies.
Journal Article
The Immune Profile of Pituitary Adenomas and a Novel Immune Classification for Predicting Immunotherapy Responsiveness
by
Wang, Zihao
,
Gao, Lu
,
Lian, Wei
in
Adenoma - diagnosis
,
Adenoma - genetics
,
Adenoma - immunology
2020
Abstract
Context
The tumor immune microenvironment is associated with clinical outcomes and immunotherapy responsiveness.
Objective
To investigate the intratumoral immune profile of pituitary adenomas (PAs) and its clinical relevance and to explore a novel immune classification for predicting immunotherapy responsiveness.
Design, Patients, and Methods
The transcriptomic data from 259 PAs and 20 normal pituitaries were included for analysis. The ImmuCellAI algorithm was used to estimate the abundance of 24 types of tumor-infiltrating immune cells (TIICs) and the expression of immune checkpoint molecules (ICMs).
Results
The distributions of TIICs differed between PAs and normal pituitaries and varied among PA subtypes. T cells dominated the immune microenvironment across all subtypes of PAs. The tumor size and patient age were correlated with the TIIC abundance, and the ubiquitin-specific protease 8 (USP8) mutation in corticotroph adenomas influenced the intratumoral TIIC distributions. Three immune clusters were identified across PAs based on the TIIC distributions. Each cluster of PAs showed unique features of ICM expression that were correlated with distinct pathways related to tumor development and progression. CTLA4/CD86 expression was upregulated in cluster 1, whereas programmed cell death protein 1/programmed cell death 1 ligand 2 (PD1/PD-L2) expression was upregulated in cluster 2. Clusters 1 and 2 exhibited a “hot” immune microenvironment and were predicted to exhibit higher immunotherapy responsiveness than cluster 3, which exhibited an overall “cold” immune microenvironment.
Conclusions
We summarized the immune profile of PAs and identified 3 novel immune clusters. These findings establish a foundation for further immune studies on PAs and provide new insights into immunotherapy strategies for PAs.
Journal Article
Clonal architecture in mesothelioma is prognostic and shapes the tumour microenvironment
2021
Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20–50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers.
BAP1
/−3p21 and
FBXW7
/-chr4 events are always
early
clonal. In contrast,
NF2
/−22q events, leading to Hippo pathway inactivation are predominantly
late
clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of
NF2
/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition.
The impact of intratumour heterogeneity on immune surveillance and clinical outcomes has not been adequately explored in malignant pleural mesothelioma (MPM). Here the authors analyse the influence of evolution on the survival and immune landscape of MPM patients using multi-region sequencing data.
Journal Article
Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination
by
Kryczek, Ilona
,
Ma, Vincent T.
,
Lao, Christopher D.
in
631/250/1619/554
,
631/250/2504/342
,
631/67/322
2021
Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8
+
T cells from systemic circulation. Within the liver, activated antigen-specific Fas
+
CD8
+
T cells undergo apoptosis following their interaction with FasL
+
CD11b
+
F4/80
+
monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8
+
T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.
Liver metastases reduce clinical and preclinical immune-checkpoint inhibitor efficacy through hepatic siphoning of circulating activated CD8
+
T cells, but therapeutic benefit can be improved by combining immunotherapy with liver-directed radiotherapy.
Journal Article
Clinical and translational implications of immunotherapy in sarcomas
by
Miserocchi, Giacomo
,
Liverani, Chiara
,
Casadei, Roberto
in
Animals
,
Bone cancer
,
Cancer therapies
2024
Immunotherapy has emerged as promising treatment in sarcomas, but the high variability in terms of histology, clinical behavior and response to treatments determines a particular challenge for its role in these neoplasms. Tumor immune microenvironment (TiME) of sarcomas reflects the heterogeneity of these tumors originating from mesenchymal cells and encompassing more than 100 histologies. Advances in the understanding of the complexity of TiME have led to an improvement of the immunotherapeutic responsiveness in sarcomas, that at first showed disappointing results. The proposed immune-classification of sarcomas based on the interaction between immune cell populations and tumor cells showed to have a prognostic and potential predictive role for immunotherapies. Several studies have explored the clinical impact of immune therapies in the management of these histotypes leading to controversial results. The presence of Tumor Infiltrating Lymphocytes (TIL) seems to correlate with an improvement in the survival of patients and with a higher responsiveness to immunotherapy. In this context, it is important to consider that also immune-related genes (IRGs) have been demonstrated to have a key role in tumorigenesis and in the building of tumor immune microenvironment. The IRGs landscape in soft tissue and bone sarcomas is characterized by the connection between several tumor-related genes that can assume a potential prognostic and predictive therapeutic role. In this paper, we reviewed the state of art of the principal immune strategies in the management of sarcomas including their clinical and translational relevance.
Journal Article
Glioma targeted therapy: insight into future of molecular approaches
2022
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Journal Article
The interaction between common genetic mutations in AML and the immune landscape: mechanisms and implications for immune response
2025
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy driven by diverse genetic mutations that shape tumor progression, immune evasion, and clinical outcomes. While molecular profiling has improved AML classification, the precise impact of specific mutations on immune cell infiltration and dysregulation remains insufficiently understood. This review examines the immunologic consequences of common AML mutations—including FLT3-ITD , NPM1 , DNMT3A , TP53 , IDH1/2 , and NRAS —and their role in remodeling the immune microenvironment. We further explore the dynamic shifts in immune responses across different AML risk stratifications, emphasizing the balance between immune activation and suppression, which is influenced by specific genetic alterations. Additionally, we highlight the emerging potential of immunotherapies targeting neoepitopes derived from driver mutations, offering promising avenues to overcome immune escape and enhance anti-tumor immune responses. By integrating genetic mutations and immunologic insights, this review outlines a framework for developing more precise and effective immunotherapies for AML.
Journal Article
Primary brain tumours in adults
2023
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10–20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Journal Article
Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment
by
Sinjab, Ansam
,
Zalzale, Hussein
,
Saab, Sara
in
Adaptive immunity
,
Animals
,
anti-tumor immunity
2020
Lung cancer is the number one cause of cancer-related deaths. The malignancy is characterized by dismal prognosis and poor clinical outcome mostly due to advanced-stage at diagnosis, thereby inflicting a heavy burden on public health worldwide. Recent breakthroughs in immunotherapy have greatly benefited a subset of lung cancer patients, and more importantly, they are undauntedly bringing forth a paradigm shift in the drugs approved for cancer treatment, by introducing \"tumor-type agnostic therapies\". Yet, and to fulfill immunotherapy's potential of personalized cancer treatment, demarcating the immune and genomic landscape of cancers at their earliest possible stages will be crucial to identify ideal targets for early treatment and to predict how a particular patient will fare with immunotherapy. Recent genomic surveys of premalignant lung cancer have shed light on early alterations in the evolution of lung cancer. More recently, the advent of immunogenomic technologies has provided prodigious opportunities to study the multidimensional landscape of lung tumors as well as their microenvironment at the molecular, genomic, and cellular resolution. In this review, we will summarize the current state of immune-based therapies for cancer, with a focus on lung malignancy, and highlight learning outcomes from clinical and preclinical studies investigating the naïve immune biology of lung cancer. The review also collates immunogenomic-based evidence from seminal reports which collectively warrant future investigations of premalignancy, the tumor-adjacent normal-appearing lung tissue, pulmonary inflammatory conditions such as chronic obstructive pulmonary disease, as well as systemic microbiome imbalance. Such future directions enable novel insights into the evolution of lung cancers and, thus, can provide a low-hanging fruit of targets for early immune-based treatment of this fatal malignancy.
Journal Article