Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,830
result(s) for
"Tumor-Associated Macrophages"
Sort by:
Decoding the spatiotemporal heterogeneity of tumor-associated macrophages
2024
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Journal Article
Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer
by
Wang, Tingting
,
Zhang, Peng
,
Luo, Qin
in
1-Phosphatidylinositol 3-kinase
,
Animals
,
Antibodies
2020
Heterotypic interactions between tumor cells and macrophages can enable tumor progression and hold potential for the development of therapeutic interventions. However, the communication between tumors and macrophages and its mechanism are poorly understood. Here, we find that tumor‐associated macrophages (TAM) from tumor‐bearing mice have high amounts of lipid as compared to macrophages from tumor‐free mice. TAM also present high lipid content in clinical human gastric cancer patients. Functionally, TAM with high lipid levels are characterized by polarized M2‐like profiling, and exhibit decreased phagocytic potency and upregulated programmed death ligand 1 (PD‐L1) expression, blocking anti–tumor T cell responses to support their immunosuppressive function. Mechanistically, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identifies the specific PI3K pathway enriched within lipid‐laid TAM. Lipid accumulation in TAM is mainly caused by increased uptake of extracellular lipids from tumor cells, which leads to the upregulated expression of gamma isoform of phosphoinositide 3‐kinase (PI3K‐γ) polarizing TAM to M2‐like profiling. Correspondingly, a preclinical gastric cancer model is used to show pharmacological targeting of PI3K‐γ in high‐lipid TAM with a selective inhibitor, IPI549. IPI549 restores the functional activity of macrophages and substantially enhances the phagocytosis activity and promotes cytotoxic‐T‐cell‐mediated tumor regression. Collectively, this symbiotic tumor‐macrophage interplay provides a potential therapeutic target for gastric cancer patients through targeting PI3K‐γ in lipid‐laden TAM. TAM with high lipid levels were characterized by M2‐like polarized profiling. Lipid accumulation in TAM was caused by increased uptake of extracellular lipids from tumor cells. Pharmacological targeting of PI3Kγ in high‐lipid TAM with a selective inhibitor, like IPI549, restores the functional activity of TAM and substantially enhances anti–tumor immunity activity in vitro and in vivo.
Journal Article
Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer
by
Das, Sumit
,
Butti, Ramesh
,
Gosavi, Suresh W.
in
Biomedical and Life Sciences
,
Biomedicine
,
Breast cancer
2024
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Journal Article
Resolvin D1 and D2 inhibit tumour growth and inflammation via modulating macrophage polarization
2020
Plastic polarization of macrophage is involved in tumorigenesis. M1‐polarized macrophage mediates rapid inflammation, entity clearance and may also cause inflammation‐induced mutagenesis. M2‐polarized macrophage inhibits rapid inflammation but can promote tumour aggravation. ω‐3 long‐chain polyunsaturated fatty acid (PUFA)‐derived metabolites show a strong anti‐inflammatory effect because they can skew macrophage polarization from M1 to M2. However, their role in tumour promotive M2 macrophage is still unknown. Resolvin D1 and D2 (RvD1 and RvD2) are docosahexaenoic acid (DHA)‐derived docosanoids converted by 15‐lipoxygenase then 5‐lipoxygenase successively. We found that although dietary DHA can inhibit prostate cancer in vivo, neither DHA (10 μmol/L) nor RvD (100 nmol/L) can directly inhibit the proliferation of prostate cancer cells in vitro. Unexpectedly, in a cancer cell‐macrophage co‐culture system, both DHA and RvD significantly inhibited cancer cell proliferation. RvD1 and RvD2 inhibited tumour‐associated macrophage (TAM or M2d) polarization. Meanwhile, RvD1 and RvD2 also exhibited anti‐inflammatory effects by inhibiting LPS‐interferon (IFN)‐γ‐induced M1 polarization as well as promoting interleukin‐4 (IL‐4)‐mediated M2a polarization. These differential polarization processes were mediated, at least in part, by protein kinase A. These results suggest that regulation of macrophage polarization using RvDs may be a potential therapeutic approach in the management of prostate cancer.
Journal Article
Tumor-Associated Macrophages as Multifaceted Regulators of Breast Tumor Growth
by
Rahman, Md Mizanur
,
Al-Harrasi, Ahmed
,
Moustaid-Moussa, Naima
in
Angiogenesis
,
Animals
,
Biomarkers, Tumor
2021
Breast cancer is the most commonly occurring cancer in women of Western countries and is the leading cause of cancer-related mortality. The breast tumor microenvironment contains immune cells, fibroblasts, adipocytes, mesenchymal stem cells, and extracellular matrix. Among these cells, macrophages or tumor-associated macrophages (TAMs) are the major components of the breast cancer microenvironment. TAMs facilitate metastasis of the breast tumor and are responsible for poor clinical outcomes. High TAM density was also found liable for the poor prognosis of breast cancer. These observations make altering TAM function a potential therapeutic target to treat breast cancer. The present review summarizes the origin of TAMs, mechanisms of macrophage recruitment and polarization in the tumor, and the contributions of TAMs in tumor progression. We have also discussed our current knowledge about TAM-targeted therapies and the roles of miRNAs and exosomes in re-educating TAM function.
Journal Article
Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance
2021
The tumor microenvironment (TME) is a complex and ever-changing “rogue organ” composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Journal Article
Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy
by
Cersosimo, Francesca
,
Lonardi, Silvia
,
Bernardini, Giulia
in
Angiogenesis
,
Bone cancer
,
Bone Neoplasms - immunology
2020
Osteosarcomas (OSs) are bone tumors most commonly found in pediatric and adolescent patients characterized by high risk of metastatic progression and recurrence after therapy. Effective therapeutic management of this disease still remains elusive as evidenced by poor patient survival rates. To achieve a more effective therapeutic management regimen, and hence patient survival, there is a need to identify more focused targeted therapies for OSs treatment in the clinical setting. The role of the OS tumor stroma microenvironment plays a significant part in the development and dissemination of this disease. Important components, and hence potential targets for treatment, are the tumor-infiltrating macrophages that are known to orchestrate many aspects of OS stromal signaling and disease progression. In particular, increased infiltration of M2-like tumor-associated macrophages (TAMs) has been associated with OS metastasis and poor patient prognosis despite currently used aggressive therapies regimens. This review aims to provide a summary update of current macrophage-centered knowledge and to discuss the possible roles that macrophages play in the process of OS metastasis development focusing on the potential influence of stromal cross-talk signaling between TAMs, cancer-stem cells and additional OSs tumoral microenvironment factors.
Journal Article
Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer
by
Chen, Xiguan
,
Xiao, Maoyu
,
Yin, Liyang
in
Angiogenesis
,
Animals
,
Antineoplastic Agents - therapeutic use
2021
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Journal Article
CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis
2020
Background
The poor prognosis of esophageal squamous cell carcinoma (ESCC) highlights the need for novel strategies against this disease. Our previous study suggested the involvement of CCL2 and tumor associated macrophages (TAMs) in esophageal carcinogenesis. Despite the recognition of TAMs as a promising target for cancer treatment, mechanisms underlying its infiltration, activation and tumor-promotive function in ESCC remain unknown.
Methods
Human esophageal tissue array and TCGA database were used to evaluate the clinical relevance of CCL2 and TAMs in ESCC. F344 rats and C57BL/6 mice were treated with N-nitrosomethylbenzylamine (NMBA) to establish orthotopic models of esophageal carcinogenesis. CCL2/CCR2 gene knockout mice and macrophage-specific PPARG gene knockout mice were respectively used to investigate the role of infiltration and polarization of TAMs in ESCC. CCL2-mediated monocyte chemotaxis was estimated in malignantly transformed Het-1A cells. THP-1 cells were used to simulate TAMs polarization in vitro. RNA-sequencing was performed to uncover the mechanism.
Results
Increasing expression of CCL2 correlated with TAMs accumulation in esophageal carcinogenesis, and they both predicts poor prognosis in ESCC cohort. Animal studies show blockade of CCL2-CCR2 axis strongly reduces tumor incidence by hindering TAMs recruitment and thereby potentiates the antitumor efficacy of CD8
+
T cells in the tumor microenvironment. More importantly, M2 polarization increases PD-L2 expression in TAMs, resulting in immune evasion and tumor promotion through PD-1 signaling pathway.
Conclusion
This study highlights the role of CCL2-CCR2 axis in esophageal carcinogenesis. Our findings provide new insight into the mechanism of immune evasion mediated by TAMs in ESCC, suggesting the potential of TAMs-targeted strategies for ESCC prevention and immunotherapy.
Journal Article
Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells
by
Chambers, Benedict J.
,
Kiessling, Rolf
,
Kanatani, Shigeaki
in
Animals
,
Antibodies
,
Antineoplastic Combined Chemotherapy Protocols - pharmacology
2020
Tumor-associated macrophages (TAMs) can have protumor properties, including suppressing immune responses, promoting vascularization and, consequently, augmenting tumor progression. To stop TAM-mediated immunosuppression, we use a novel treatment by injecting antibodies specific for scavenger receptor MARCO, which is expressed on a specific subpopulation of TAMs in the tumor. We now report the location of this TAM as well as the pleiotropic mechanism of action of anti-MARCO antibody treatment on tumor progression and further show that this is potentially relevant to humans. Using specific targeting, we observed decreased tumor vascularization, a switch in the metabolic program of MARCO-expressing macrophages, and activation of natural killer (NK) cell killing through TNF-related apoptosis-inducing ligand (TRAIL). This latter activity reverses the effect of melanoma cell-conditioned macrophages in blocking NK activation and synergizes with T cell-directed immunotherapy, such as antibodies to PD-1 or PD-L1, to enhance tumor killing. Our study thus reveals an approach to targeting the immunosuppressive tumor microenvironment with monoclonal antibodies to enhance NK cell activation and NK cell-mediated killing. This can complement existing T cell-directed immunotherapy, providing a promising approach to combinatorial immunotherapy for cancer.
Journal Article