Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
172 result(s) for "Tuna - microbiology"
Sort by:
Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States
Background. Using a novel combination of whole-genome sequencing (WGS) analysis and geographic metadata, we traced the origins of Salmonella Bareilly isolates collected in 2012 during a widespread food-borne outbreak in the United States associated with scraped tuna imported from India. Methods. Using next-generation sequencing, we sequenced the complete genome of 100 Salmonella Bareilly isolates obtained from patients who consumed contaminated product, from natural sources, and from unrelated historically and geographically disparate foods. Pathogen genomes were linked to geography by projecting the phylogeny on a virtual globe and produced a transmission network. Results. Phylogenetic analysis of WGS data revealed a common origin for outbreak strains, indicating that patients in Maryland and New York were infected from sources originating at a facility in India. Conclusions. These data represent the first report fully integrating WGS analysis with geographic mapping and a novel use of transmission networks. Results showed that WGS vastly improves our ability to delimit the scope and source of bacterial food-borne contamination events. Furthermore, these findings reinforce the extraordinary utility that WGS brings to global outbreak investigation as a greatly enhanced approach to protecting the human food supply chain as well as public health in general.
Tracking spoilage bacteria in the tuna microbiome
ABSTRACT Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its consumption, whether fresh or canned, can lead to severe food poisoning due to the activity of specific microorganisms, including histamine-producing bacteria. Yet, many grey areas persist regarding their ecology, conditions of emergence, and proliferation in fish. In this study, we used 16S rRNA barcoding to investigate postmortem changes in the bacteriome of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late stages of decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and liver. The relative abundance of spoilage bacterial taxa increased rapidly in both organs, representing 82% of the bacterial communities in fresh yellowfin tuna, and less than 30% in brine-frozen tuna. Photobacterium was identified as one of the dominant bacterial genera, and its temporal dynamics were positively correlated with histamine concentration in both gut and liver samples, which ultimately exceeded the recommended sanitary threshold of 50 ppm in edible parts of tuna. The results from this study show that the sanitary risks associated with the consumption of this widely eaten fish are strongly influenced by postcapture storage conditions. Our study of the tuna microbiome has shown that the liver and gut of these fish are reservoirs of histamine-producing bacteria likely to present a health risk.
Growth Kinetics and Spoilage Potential of Co-culturing Acinetobacter johnsonii and Pseudomonas fluorescens from Bigeye Tuna (Thunnus obesus) During Refrigerated Storage
A. johnsonii and P. fluorescens are the well-known specific spoilage organisms in aquatic products and the study of the interactions between A. johnsonii and P. fluorescens are limited. This study aims to evaluate the growth kinetics, spoilage potential and interactions of A. johnsonii and P. fluorescens isolated from spoiled bigeye tuna (Thunnus obesus) by inoculating into sterile fish slices and stored at 4 °C for 6 days. The growth kinetics of A. johnsonii and P. fluorescens were fitted with Baranyi and Roberts model. The chemical indexes (total volatile base nitrogen (TVB-N), trimethylamine (TMA), pH, proteolytic activity and protein content) of each inoculated block of bigeye tuna were increased during refrigerated storage. Moreover, the higher contents of chemical indexes were observed in co-culture with A. johnsonii and P. fluorescens compared with single culture of A. johnsonii and P. fluorescens. In addition, atomic force microscopy (AFM) observation of co-culturing A. johnsonii and P. fluorescens inoculation into sterile fish slices revealed damage of myofibrillar protein structures and the protein degradation. Based on these parameters, a rapid method to evaluate spoilage potential of A. johnsonii and P. fluorescens was positively correlated with TVB-N value, TMA value and pH value (P < 0.05) by the correlation coefficient. Consequently, spoilage potential of microorganisms became stronger evaluated in a mixed culture than single culture. This paper provides insight for a detection method of interactions of A. johnsonii and P. fluorescens during refrigerated storage.
Histamine Production Behaviors of a Psychrotolerant Histamine-Producer, Morganella psychrotolerans, in Various Environmental Conditions
Histamine food poisoning is a major safety concern related to seafood consumption worldwide. Morganella psychrotolerans is a novel psychrotolerant histamine-producer. In this study, the histamine production behaviors of M. psychrotolerans and two other major histamine-producers, mesophilic Morganella morganii and psychrotrophic Photobacterium phosphoreum, were compared in seafood products, and histamine accumulation by M. psychrotolerans was characterized at various pH and temperature levels in culture broth. The growth of M. psychrotolerans and P. phosphoreum increased similarly at 4 °C in canned tuna, but M. psychrotolerans produced much higher levels of histamine than P. phosphoreum. Histamine accumulation by M. psychrotolerans was induced at lower environmental pH condition at 4 and 20 °C. The optimal temperature and pH for producing histamine by crude histidine decarboxylase of M. psychrotolerans were 30 °C and pH 7, respectively. The activity of the crude HDC extracted from M. psychrotolerans cells at 10 °C retained 45% of the activity at 30 °C. Histidine decarboxylase gene expression of M. psychrotolerans was induced by low pH conditions. These results suggest that M. psychrotolerans are also a very important histamine-producer leading to histamine poisoning associated with seafood below the refrigeration temperature.
Characterization and comparison of the digestive physiology of two scombrids, Katsuwonus pelamis and Sarda sarda, in the Gulf of Cádiz
Fish and other marine animals have a unique and intimate interaction with their surrounding environment. Diet type or trophic level play significant roles in modulating species digestive physiology. However, little is known about how the trophic niche influences digestive activity and gut microbiota in scombrids species. The aim of the present study was to analyse and describe the digestive physiology of the skipjack tuna ( Katsuwonus pelamis ) and the Atlantic bonito ( Sarda sarda ) as bioindicator of the feeding ecology and trophic niche for both species in the Gulf of Cádiz (Spain). For that, fish proximate composition, pH of digestive organs and digestive enzymes activity levels were analysed in 10 individuals of each species to gain insight into the digestive physiological adaptations of the two species of scombrids. In addition, intestinal microbiota composition was determined for the skipjack tuna. The integration of the results suggested a clear trophic niche segregation between both species. Stomach pH was associated in both species with infrequent feeding events. Body proximate composition and digestive lipases activity patterns pointed to a high predominance of lipids in the Atlantic bonito diet, suggesting oily fish as main prey. On the other hand, results supported the skipjack tuna as a highly opportunistic feeder with a more varied diet, including fish but also crustaceans as preys. The gut microbial community in the latter species is dominated by Firmicutes and Tenericutes at phylum level, and by Mycoplasma, Blautia and Dorea at genus level. The present study contributes to advance the knowledge on the feeding behaviour and physiology diversity in fish species as a result of adaptation to a particular habitat.
Fishing for the Microbiome of Tropical Tuna
Although tunas represent a significant part of the global fish economy and a major nutritional resource worldwide, their microbiome still remains poorly documented. Here, we conducted an analysis of the taxonomic composition of the bacterial communities inhabiting the gut, skin, and liver of two most consumed tropical tuna species (skipjack and yellowfin), from individuals caught in the Atlantic and Indian oceans. We hypothesized that each organ harbors a specific microbial assemblage whose composition might vary according to different biotic (sex, species) and/or abiotic (environmental) factors. Our results revealed that the composition of the tuna microbiome was totally independent of fish sex, regardless of the species and ocean considered. Instead, the main determinants of observed diversity were (i) tuna species for the gut and (ii) sampling site for the skin mucus layer and (iii) a combination of both parameters for the liver. Interestingly, 4.5% of all amplicon sequence variants (ASV) were shared by the three organs, highlighting the presence of a core-microbiota whose most abundant representatives belonged to the genera Mycoplasma, Cutibacterium, and Photobacterium. Our study also revealed the presence of a unique and diversified bacterial assemblage within the tuna liver, comprising a substantial proportion of potential histamine-producing bacteria, well known for their pathogenicity and their contribution to fish poisoning cases. These results indicate that this organ is an unexplored microbial niche whose role in the health of both the host and consumers remains to be elucidated.
Multistate outbreak of Salmonella Paratyphi B variant L(+) tartrate(+) and Salmonella Weltevreden infections linked to imported frozen raw tuna: USA, March–July 2015
Foodborne non-typhoidal salmonellosis causes approximately 1 million illnesses annually in the USA. In April 2015, we investigated a multistate outbreak of 65 Salmonella Paratyphi B variant L(+) tartrate(+) infections associated with frozen raw tuna imported from Indonesia, which was consumed raw in sushi. Forty-six (92%) of 50 case-patients interviewed ate sushi during the week before illness onset, and 44 (98%) of 45 who specified ate sushi containing raw tuna. Two outbreak strains were isolated from the samples of frozen raw tuna. Traceback identified a single importer as a common source of tuna consumed by case-patients; this importer issued three voluntary recalls of tuna sourced from one Indonesian processor. Four Salmonella Weltevreden infections were also linked to this outbreak. Whole-genome sequencing was useful in establishing a link between Salmonella isolated from ill people and tuna. This outbreak highlights the continuing foodborne illness risk associated with raw seafood consumption, the importance of processing seafood in a manner that minimises contamination with pathogenic microorganisms and the continuing need to ensure imported foods are safe to eat. People at higher risk for foodborne illness should not consume undercooked animal products, such as raw seafood.
Storage Time and Temperature Effects on Histamine Production in Tuna Salad Preparations
Scombrotoxin fish poisoning (SFP), also known as histamine (Hst) poisoning, has been associated with consumption of scombroid-type fish, including tuna and tuna fish products. Preparation of commercial tuna salad contaminated with Hstproducing bacteria (HPB), combined with time-temperature abuse, can present a food safety hazard. A potential source of HPB is raw ingredients, such as celery and onions. The objectives of this study were to determine whether raw ingredients can be a source of HPB and to ascertain the effects of storage time (up to 4 days or 4 weeks) and temperature (4, 10, 18, 25, 30°C) on growth and Hst production by high-HPB (>1,000 ppm of Hst) in tuna salad preparations. Pantoea-Erwinia, Erwinia persicinus, Erwinia spp., and Enterobacter pyrinus isolated from celery in this study were used to inoculate tuna salad and tuna salad with celery or onion. HPB numbers were 0.7 to 4.3 log most probable number per g higher in the presence of celery or onion versus plain tuna salad (3:1 tuna:mayonnaise). E. pyrinus-inoculated plain tuna salad and tuna salad with celery and onion had >500 ppm of Hst after 2 days at 30°C and 4 days at 25°C. E. pyrinus-inoculated salad with celery and onion had >500 ppm of Hst after 4 days at 18°C and 2 weeks at 10°C. Raw celery can introduce HPB into tuna salad, which can cause SFP if the product is time-temperature abused. Tuna salad products must be refrigerated at ≤4°C to prevent growth and Hst production by the HPB used in this study, to protect consumers from potential SFP.
Effect of Storage Temperature on the Outgrowth and Toxin Production of Staphylococcus aureus in Freeze-Thawed Precooked Tuna Meat
The aim of this study was to determine the time for a 3-log CFU/g outgrowth of Staphylococcus aureus and its toxin production in previously frozen precooked tuna meat (albacore [Thunnus alalunga] prepared as loin, chunk, and flake or skipjack [Katsuwonus pelamis] prepared as chunk and flake) held either at 21 or 27°C. A five-strain cocktail of enterotoxin-producing S. aureus was surface inoculated with ∼10(3) CFU/g onto tuna samples. The experimental time-temperature conditions were designed to mimic common industry holding conditions. After a 3-h incubation at 37°C, inoculated samples were individually vacuum sealed and stored at 20°C for 4 weeks. Following frozen storage, samples were thawed to the target temperature (21 or 27°C) and then incubated aerobically. Growth of S. aureus in tuna was then monitored using Baird Parker agar; simultaneously, aerobic plate counts, enterotoxin production, and sensory profile (color and odor) were determined. The results showed that the time for a 3-log CFU/g increase was >20 h at 21°C and 8 to 12 h at 27°C for albacore, with toxin production observed at 14 to 16 h at 21°C and at 8 h at 27°C. A 3-log CFU/g increase for skipjack occurred at 22 to 24 h at 21°C and at 10 to 14 h at 27°C. The toxin production in skipjack started at 20 to 22 h at 21°C and at 8 to 10 h at 27°C. Toxin production was observed before a 3-log increase was achieved in albacore samples at 21°C. Under all conditions, toxins were detected when the cell density of S. aureus was 6 log CFU/g. Overall, significantly faster S. aureus growth was observed in albacore compared with skipjack (P < 0.05), possibly owing to differences in sample composition (e.g., pH and salt content). The data developed from this study can be used by the tuna industry to model the growth and enterotoxin production of S. aureus and to design manufacturing controls that ensure food safety.
Heat Resistance of Histamine-Producing Bacteria in Irradiated Tuna Loins
Consumption of foods high in biogenic amines leads to an illness known as histamine, or scombrotoxin, poisoning. The illness is commonly associated with consumption of fish with high levels of histamine ( $ 500 ppm). The objective of this study was to determine and compare the heat resistance of five histamine-producing bacteria in irradiated albacore tuna loins. Heat-resistance parameters (D- and z-values) were determined for Morganella morganii, Raoultella planticola, Hafnia alvei, and Enterobacter aerogenes. D- or z-values were not determined for Photobacterium damselae, which was the most heat-sensitive organism in this study. P. damselae declined . 5.9 log CFU/g after a heat treatment of 50°C for 10 min, 54°C for 3 min, and 56°C for 0.5 min. M. morganii was the most heat-resistant histamine-producing bacteria in albacore tuna loins, followed by E. aerogenes, H. alvei, and R. planticola. M. morganii and E. aerogenes had the highest D 50° C, 49.7 +/- 17.57 and 51.8 +/- 17.38 min, respectively. In addition, M. morganii had the highest D-values for all other temperatures (54, 56, and 58°C) tested. D- and zvalues were also determined for M. morganii in skipjack tuna. While no significant (P > 0.05) difference was observed between D 54° C and D 56° C of M. morganii in either albacore or skipjack tuna, the D 58° C (0.4 +/- 0.17 min) was significantly lower (P < 0.05) in skipjack than in albacore (0.9 +/- 0.24 min). The z-values for all organisms tested were in the range of 3.2 to 3.8°C. This study suggests that heat treatment designed to control M. morganii in tuna loins is sufficient for controlling histamine-producing bacteria in canned-tuna processing environments.