Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
994 result(s) for "Two dimensional boundary layer"
Sort by:
Experimental characterization and similarity scaling of smooth-body flow separation and reattachment on a two-dimensional ramp geometry
The results of an experimental investigation of smooth-body adverse pressure gradient (APG) turbulent boundary layer flow separation and reattachment over a two-dimensional ramp are presented. These results are part of a larger archival smooth-body flow separation data set acquired in partnership with NASA Langley Research Center and archived on the NASA Turbulence Modeling Resource website. The experimental geometry provides initial canonical turbulent boundary layer growth under nominally zero pressure gradient conditions prior to encountering a smooth, two-dimensional, backward facing ramp geometry onto which a streamwise APG that is fully adjustable is imposed. Detailed surface and off-surface flow field measurements are used to fully characterize the smooth-body APG turbulent boundary layer separation and reattachment at multiple spanwise locations over the ramp geometry. Unsteady aspects of the flow separation are characterized. It is shown that the first and second spatial derivatives of the streamwise static surface pressure profile are sufficient to determine key detachment and reattachment locations. The imposed streamwise APG gives rise to inflectional mean velocity profiles and the associated formation of an embedded shear layer, which is shown to play a dominant role in the subsequent flow development. Similarity scaling is developed for both the mean velocity and turbulent stresses that is found to provide self-similar collapse of profiles for different regions of the ramp flow. Despite the highly non-equilibrium flow environment, a new similarity scaling proved capable of providing self-similar turbulent stress profiles over the full streamwise extent of flow separation and downstream reattachment.
Reinforcement-learning-based control of convectively unstable flows
This work reports the application of a model-free deep reinforcement learning (DRL) based flow control strategy to suppress perturbations evolving in the one-dimensional linearised Kuramoto–Sivashinsky (KS) equation and two-dimensional boundary layer flows. The former is commonly used to model the disturbance developing in flat-plate boundary layer flows. These flow systems are convectively unstable, being able to amplify the upstream disturbance, and are thus difficult to control. The control action is implemented through a volumetric force at a fixed position, and the control performance is evaluated by the reduction of perturbation amplitude downstream. We first demonstrate the effectiveness of the DRL-based control in the KS system subjected to a random upstream noise. The amplitude of perturbation monitored downstream is reduced significantly, and the learnt policy is shown to be robust to both measurement and external noise. One of our focuses is to place sensors optimally in the DRL control using the gradient-free particle swarm optimisation algorithm. After the optimisation process for different numbers of sensors, a specific eight-sensor placement is found to yield the best control performance. The optimised sensor placement in the KS equation is applied directly to control two-dimensional Blasius boundary layer flows, and can efficiently reduce the downstream perturbation energy. Via flow analyses, the control mechanism found by DRL is the opposition control. Besides, it is found that when the flow instability information is embedded in the reward function of DRL to penalise the instability, the control performance can be further improved in this convectively unstable flow.
A new equivalent sand grain roughness relation for two-dimensional rough wall turbulent boundary layers
The effects of different geometries of two-dimensional (2-D) roughness elements in a zero pressure gradient (ZPG) turbulent boundary layer (TBL) on turbulence statistics and drag coefficient are assessed using single hot-wire anemometry. Three kinds of 2-D roughness are used: (i) circular rods with two different heights, $k= 1.6$ and 2.4 mm, and five different streamwise spacing of $s_{x}= 6k$ to $24k$, (ii) three-dimensional (3-D) printed triangular ribs with heights of $k= 1.6$ mm and spacing of $s_{x}= 8k$ and (iii) computerized numerical control (CNC) machined sinewave surfaces with two different heights, $k= 1.6$ and 2.4 mm, and spacing of $s_{x}= 8k$. These roughnesses cover a wide range of ratios of the boundary layer thickness to the roughness height ($23 < \\delta /k < 41$), where $\\delta$ is the boundary layer thickness. All roughnesses cause a downward shift on the wall-unit normalised streamwise mean velocity profile when compared with the smooth wall profiles agreeing with the literature, with a maximum downward shift observed for $s_{x}= 8k$. In the fully rough regime, the drag coefficient becomes independent of the Reynolds number. Changing the roughness height while maintaining the same spacing ratio $s_{x}/k$ exhibits little influence on the drag coefficient in the fully rough regime. On the other hand, the effective slope $(ES)$ and the height skewness $(k_{sk})$ appear to be major surface roughness parameters that affect the drag coefficient. These parameters are used in a new expression for $k_{s}$, the equivalent sand grain roughness, developed for 2-D uniformly distributed roughness in the fully rough regime.
The near wake of discrete roughness elements on swept wings
This work presents the first experimental characterization of the flow field in the vicinity of periodically spaced discrete roughness elements (DRE) in a swept wing boundary layer. The time-averaged velocity fields are acquired in a volumetric domain by high-resolution dual-pulse tomographic particle tracking velocimetry. Investigation of the stationary flow topology indicates that the near-element flow region is dominated by high- and low-speed streaks. The boundary layer spectral content is inferred by spatial fast Fourier transform (FFT) analysis of the spanwise velocity signal, characterizing the chordwise behaviour of individual disturbance modes. The two signature features of transient growth, namely algebraic growth and exponential decay, are identified in the chordwise evolution of the disturbance energy associated with higher harmonics of the primary stationary mode. A transient decay process is instead identified in the near-wake region just aft of each DRE, similar to the wake relaxation effect previously observed in two-dimensional boundary layer flows. The transient decay regime is found to condition the onset and initial amplitude of modal crossflow instabilities. Within the critical DRE amplitude range (i.e. affecting boundary layer transition without causing flow tripping) the transient disturbances are strongly receptive to the spanwise spacing and diameter of the elements, which drive the modal energy distribution within the spatial spectra. In the super-critical amplitude forcing (i.e. causing flow tripping) the near-element stationary flow topology is dominated by the development of a high-speed and strongly fluctuating region closely aligned with the DRE wake. Therefore, elevated shears and unsteady disturbances affect the near-element flow development. Combined with the harmonic modes transient growth these instabilities initiate a laminar streak structure breakdown and a bypass transition process.
Linear instability of a supersonic boundary layer over a rotating cone
In this paper, we conduct a systematic study of the instability of a boundary layer over a rotating cone that is inserting into a supersonic stream with zero angle of attack. The base flow is obtained by solving the compressible boundary-layer equations using a marching scheme, whose accuracy is confirmed by comparing with the full Navier–Stokes solution. Setting the oncoming Mach number and the semi-apex angle to be 3 and 7$^\\circ$, respectively, the instability characteristics for different rotating rates ($\\bar \\varOmega$, defined as the ratio of the rotating speed of the cone to the axial velocity) and Reynolds numbers ($R$) are revealed. For a rather weak rotation, $\\bar \\varOmega \\ll 1$, only the modified Mack mode (MMM) exists, which is an extension of the supersonic Mack mode in a quasi-two-dimensional boundary layer to a rotation configuration. Further increase of $\\bar \\varOmega$ leads to the appearance of a cross-flow mode (CFM), coexisting with the MMM but in the quasi-zero frequency band. The unstable zones of the MMM and CFM merge together, and so they are referred to as the type-I instability. When $\\bar \\varOmega$ is increased to an $O(1)$ level, an additional unstable zone emerges, which is referred to as the type-II instability to be distinguished from the aforementioned type-I instability. The type-II instability appears as a centrifugal mode (CM) when $R$ is less than a certain value, but appears as a new CFM for higher Reynolds numbers. The unstable zone of the type-II CM enlarges as $\\bar \\varOmega$ increases. The vortex structures of these types of instability modes are compared, and their large-$R$ behaviours are also discussed.
Reactive control of second Mack mode in a supersonic boundary layer with free-stream velocity/density variations
We consider closed-loop control of a two-dimensional supersonic boundary layer at $M=4.5$ that aims at reducing the linear growth of second Mack mode instabilities. These instabilities are first characterized with local spatial and global resolvent analyses, which allow us to refine the control strategy and to select appropriate actuators and sensors. After linear input–output reduced-order models have been identified, multi-criteria structured mixed $H_{2}$/$H_{\\infty }$ synthesis allows us to fix beforehand the controller structure and to minimize appropriate norms of various transfer functions: the $H_{2}$ norm to guarantee performance (reduction of perturbation amplification in nominal condition), and the $H_{\\infty }$ norm to maintain performance robustness (with respect to sensor noise) and stability robustness (with respect to uncertain free-stream velocity/density variations). Both feedforward and feedback set-ups, i.e. with estimation sensor placed respectively upstream/downstream of the actuator, allow us to maintain the local perturbation energy below a given threshold over a significant distance downstream of the actuator, even in the case of noisy estimation sensors or free-stream density variations. However, the feedforward set-up becomes completely ineffective when convective time delays are altered by free-stream velocity variations of $\\pm$5 %, which highlights the strong relevance of the feedback set-up for performance robustness in convectively unstable flows.
High-bandwidth pressure field imaging of fin-generated shock wave–boundary layer interactions
The dynamics of a shock-induced separation unit generated by a 20$^\\circ$ sharp fin placed on a cylindrical surface in a Mach 2.5 flow was investigated. Specifically, the present work investigated the mechanisms that govern the mid-frequency range of separation shock unsteadiness in the fin shock wave–boundary layer interaction (SBLI) unit. Two-dimensional pressure fields were obtained over the cylinder surface spanning the entire fin SBLI unit using high-bandwidth pressure-sensitive paint at 40 kHz imaging rate that allowed probing the low- through mid-frequency ranges of the separation shock unsteadiness. The mean pressure field showed a progressive weakening of the separation shock with downstream distance, which is an artifact of the three-dimensional relief offered by the curved mounting surface. The root-mean-square (r.m.s.) pressure field exhibited a banded structure with elevated $p_{r.m.s.}$ levels beneath the intermittent region, separation vortex and adjacent to the fin root. The power spectral density (PSD) of the surface pressure fluctuations obtained beneath the intermittent region revealed that the separation shock oscillations exhibited the mid-frequency content over the majority of its length. Interestingly, neither the PSD nor the length of the intermittent region varied noticeably with downstream distance, revealing a constant separation shock foot velocity along the entire SBLI. The pressure fluctuation PSD beneath the separation vortex also exhibited the broadband peak at the mid-frequency range of the separation shock motions over the majority of its length within the measurement domain. By contrast, the region adjacent to the fin root exhibited pressure oscillations at a substantially lower frequency compared with the separation shock and the separation vortex. Two-point coherence and cross-correlation analysis provided unique insights into the critical sources and mechanisms that drive the separation shock unsteadiness. The separation vortex and separation shock dynamics were found to be driven by a combination of convecting perturbations that originated from the vicinity of the fin leading edge and the local interactions of the separated flow with the incoming boundary layer. The boundary layer locally strengthened or weakened the convecting pressure perturbations depending on the local momentum fluctuations within the boundary layer.
Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures
The goal of this study is to analyse the steady flow of a Newtonian fluid mixed with spherical particles in a channel for the purpose of modelling proppant transport with gravitational settling in hydraulic fractures. The developments are based on a continuum constitutive model for a slurry, which is approximated by an empirical formula. It is shown that the problem under consideration features a two-dimensional flow and a boundary layer, which effectively introduces slip at the boundary and allows us to describe a transition from Poiseuille flow to Darcy’s law for high proppant concentrations. The expressions for both the outer (i.e. outside the boundary layer) and inner (i.e. within the boundary layer) solutions are obtained in terms of the particle concentration, particle velocity and fluid velocity. Unfortunately, these solutions require the numerical solution of an integral equation, and, as a result, the development of a proppant transport model for hydraulic fracturing based on these results is not practicable. To reduce the complexity of the problem, an approximate solution is introduced. To validate the use of this approximation, the error is estimated for different regimes of flow. The approximate solution is then used to calculate the expressions for the slurry flux and the proppant flux, which are the basis for a model that can be used to account for proppant transport with gravitational settling in a fully coupled hydraulic fracturing simulator.
Gravity currents under oscillatory forcing
We investigate the effect of external oscillatory forcing on evolving two-dimensional (2-D) gravity currents, resulting from the well-known lock-exchange set-up, by superimposing a horizontally uniform oscillating pressure gradient. This pressure gradient generates a 2-D horizontally uniform laminar oscillating flow over the flat no-slip bottom that interacts with the evolving gravity current. We explore the effect of the velocity amplitude of the applied oscillating flow and its period of oscillations on the behaviour of the evolving gravity currents. A key element introduced by the external forcing is the Stokes boundary layer near the no-slip bottom wall generating differential advection near the bottom wall when the propagation direction of the gravity current and the oscillating externally imposed flow are in the same direction. This results in a phenomenon that we refer to as lifting of the gravity current, which clearly distinguishes the oscillatory forced gravity current from the freely evolving case. This phenomenon induces fine-scale density structures when the externally imposed flow is opposite to the propagation direction of the gravity current a semi-period later. We have explored the effect of lifting on the current propagation and the density structure of the gravity current front. Three separate regimes are distinguished for the evolution of the density structure in the front of the gravity current depending on the period of forcing, including a regime reminiscent of tidally forced estuarine flows. The present study shows the existence of significant effects of an oscillatory forcing on the dynamics, advection and density distribution of gravity currents.
Generating synthetic turbulence with vector autoregression of proper orthogonal decomposition time coefficients
This study introduces vector autoregression (VAR) as a linear procedure that can be used for synthesizing turbulence time series over an entire plane, allowing them to be imposed as an efficient turbulent inflow condition in simulations requiring stationary and cross-correlated turbulence time series. VAR is a statistical tool for modelling and prediction of multivariate time series through capturing linear correlations between multiple time series. A Fourier-based proper orthogonal decomposition (POD) is performed on the two-dimensional (2-D) velocity slices from a precursor simulation of a turbulent boundary layer at a momentum thickness-based Reynolds number, $Re_{\\theta }=790$. A subset of the most energetic structures in space are then extracted, followed by applying a VAR model to their complex time coefficients. It is observed that VAR models constructed using time coefficients of 5 and 30 most energetic POD modes per wavenumber (corresponding to $66\\,\\%$ and $97\\,\\%$ of turbulent kinetic energy, respectively) are able to make accurate predictions of the evolution of the velocity field at $Re_{\\theta }=790$ for infinite time. Moreover, the 2-D velocity fields from the POD–VAR when used as a turbulent inflow condition, gave a short development distance when compared with other common inflow methods. Since the VAR model can produce an infinite number of velocity planes in time, this enables reaching statistical stationarity without having to run an extremely long precursor simulation or applying ad hoc methods such as periodic time series.