Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Two-dimensionalism"
Sort by:
Memory in two dimensions
Memories can be accurate or inaccurate. They have, then, accuracy conditions. A reasonable picture of the accuracy conditions of a memory is that a memory is accurate just in case the reference of a memory satisfies the information provided by the memory. But how are the references of our memories determined exactly? And what are the accuracy conditions of memories, given their references? In this paper, I argue that the notion of accuracy conditions for memories is ambiguous. There are two types of conditions which can be plausibly construed as accuracy conditions for memories. I motivate this idea by using some resources from two-dimensional semantics. The outcome of applying two-dimensionalism to memory is that memories have two kinds of accuracy conditions. In both cases, causal relations play an important role in the framing of those conditions. But the role is quite different in each case. For one type of accuracy conditions, the causal relations which produce a memory play the role of fixing the reference of that memory. For the other type of accuracy conditions, the causal relations which produce a memory become part of the information which needs to be satisfied by the reference of the memory for it to be accurate. However, in both cases, the picture according to which a memory is accurate just in case the reference of a memory satisfies the information provided by the memory reemerges as being correct, though for interestingly different reasons.
God’s necessary existence: a thomistic perspective
There are strong reasons for assuming that Thomas Aquinas conceived of God’s existence in terms of logical necessity in a broad sense. Yet this seems to stand in some tension with the fact that he excludes the possibility of a priori arguments for the existence of God. One apparently attractive way of handling this tension is to use a two-dimensional framework inspired by Saul Kripke. Against this, this article demonstrates that a Kripke-inspired framework is inapt in this context because it allows for the conceivability of God’s non-existence, thereby rendering his non-existence possible in some important, and for Aquinas inacceptable, sense. Drawing on David Chalmers, the article submits that the existence of God can only be necessary if God’s non-existence is ideally inconceivable. On the basis of Aquinas’ own understanding of God, however, the article argues further that God’s non-existence in fact is inconceivable. The alleged conceivability of God’s non-existence is ultimately due to our (human) inability to grasp the nature of being, whereas creatures who grasp the nature of being are unable to conceive of God’s non-existence. This removes God’s non-existence from the realm of relevant conceivability and, therefore, from the range of possible worlds.
Two notions of metaphysical modality
The paper explores the project of an ambitious modal epistemology that attempts to combine the a priori methods of Chalmers’ 2D semantics with Kripke’s modal metaphysics. I argue that such a project is not viable. The ambitious modal epistemology involves an inconsistent triad composed of (1) Modal Monism, (2) Two-Dimensionalism, and what I call (3) “Metaphysical Kripkeanism”. I present the three theses and show how only two of those can be true at a time. There is a fundamental incompatibility between Chalmers’ Modal Rationalism and Kripke’s modal meta-physics. Specifically, Chalmers’ conceivability entails possibilities that a Kripkean rejects as genuinely metaphysical. However, three positive stances in modal epistemology emerge from the combinations that the triad allows. One of those offers a promising way forward for 2D modal epistemologies. But it comes with a cost, as it requires abandoning modal monism and reshaping the scope of what a priori conceivability can give us access to.
Relative Necessity Reformulated
This paper discusses some serious difficulties for what we shall call the standard account of various kinds of relative necessity, according to which any given kind of relative necessity may be defined by a strict conditional - necessarily, if C then p - where C is a suitable constant proposition, such as a conjunction of physical laws. We argue, with the help of Humberstone (Reports on Mathematical Logic, 31, 33-421, 1981), that the standard account has several unpalatable consequences. We argue that Humberstone's alternative account has certain disadvantages, and offer another - considerably simpler - solution.
Secondary belief content, what is it good for?
Some use the need to explain communication, agreement, and disagreement to argue for two-dimensional conceptions of belief content. One prominent defender of an account of this sort is David Chalmers. Chalmers claims that beliefs have two kinds of content. The second dimension of belief content, which is tied to what beliefs pick out in the actual world, is supposed to help explain communication, agreement, and dis agreement. I argue that it does not. Since the need to explain these phenomena is the main stated motivation for the addition of the second dimension of belief content, my arguments also undermine the motivation for Chalmers' two-dimensional account of belief content and theories like it.
FRONTLOADING, SUPPOSITION, AND CONTRACTION
In Constructing the World, Chalmers observes that our knowledge exceeds the core evidence provided by our senses and introspection. Thus, on the basis of core evidence, one also can know (S) that water covers the majority of the Earth. This knowledge, Chalmers suggests, requires a great deal of a priori knowledge. Chalmers argues that even if one suspends belief in one's core evidence, one can nevertheless reason from a description of this evidence to an ordinary claim such as S. Chalmers concludes that the ordinary claim must be a priori entailed by a description of the core evidence. However, I propose that careful thinking about belief suspension reveals that empirical information can contaminate the reasoning from the core evidence to the ordinary claim S, even if belief in the core evidence is suspended. One result is that empiricists and externalists may freely appeal to thought experiments without having to concede that there are substantive a priori truths.
Propositions, semantic values, and rigidity
Jeffrey King has recently argued: (i) that the semantic value of a sentence at a context is (or determines) a function from possible worlds to truth values, and (ii) that this undermines Jason Stanley's argument against the rigidity thesis, the claim that no rigid term has the same content as a non-rigid term. I show that King's main argument for (i) fails, and that Stanley's argument is consistent with the claim that the semantic value of a sentence at a context is (or determines) a function from worlds to truth values.
The Metasyntactic Interpretation of Two-Dimensionalism
Robert Stalnaker contrasts two interpretations, semantic and metasemantic, of the two-dimensionalist framework. On the semantic interpretation, the primary intension or diagonal proposition associated with an utterance is a semantic value that the utterance has in virtue of the actual linguistic meaning of the corresponding sentence, and that primary intension is both what a competent speaker grasps and what determines different secondary intensions or horizontal propositions relative to different possible worlds considered as actual. The metasemantic interpretation reverses the order of explanation: an utterance has the primary intension it has because it yields the secondary intensions it yields relative to different possible worlds considered as actual. In these possible worlds, the semantic facts can be different: the metasemantic interpretation is metasemantic in the sense that the secondary intensions are determined relative to possible worlds considered as actual given the meanings the expressions have there. Stalnaker holds a causal picture of the reference of names, according to which names have no meaning over and above their unique referent, and therefore maintains that the semantic interpretation is not an option. He thus endorses the metasemantic interpretation, while insisting that this interpretation does not, contrary to what he originally thought, yield any account of a priori truth and knowledge. My double aim in this paper is to show (i) that the metasemantic interpretation, as sketched by Stalnaker, is not compatible with one natural understanding of the causal picture of reference, on which names are rigid because they have their original bearers essentially, and (ii) that a third kind of interpretation of the framework is available, the metasyntactic interpretation, which grants that names have their bearers essentially and yields some account of a priori knowledge.
Soames's argument 1 against strong two-dimensionalism
This paper criticizes Soames's main argument against a variant of two-dimensionalism that he calls strong two-dimensionalism. The idea of Soames's argument is to show that the strong two-dimensionalist's semantics for belief ascriptions delivers wrong semantic verdicts about certain complex modal sentences that contain both such ascriptions and claims about the truth of the ascribed beliefs. A closer look at the formal semantics underlying strong two-dimensionalism reveals that there are two feasible ways of specifying the truth conditions for claims of the latter sort. Only one of the two yields the problematic semantic verdicts, so strong two-dimensionalists can avoid Soames's argument by settling for the other way.