Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,795 result(s) for "U.S. National Park Service"
Sort by:
Long-term trends indicate that invasive plants are pervasive and increasing in eastern national parks
While invasive plant distributions are relatively well known in the eastern United States, temporal changes in species distributions and interactions among species have received little attention. Managers are therefore left to make management decisions without knowing which species pose the greatest threats based on their ability to spread, persist and outcompete other invasive species. To fill this gap, we used the U.S. National Park Service’s Inventory and Monitoring Program data collected from over 1,400 permanent forest plots spanning 12 yr and covering 39 eastern national parks to analyze invasive plant trends. We analyzed trends in abundance at multiple scales, including plot frequency, quadrat frequency, and average quadrat cover. We examined trends overall, by functional group, and by species. We detected considerably more increasing than decreasing trends in invasive plant abundance. In fact, 80% of the parks in our study had at least one significant increasing trend in invasive abundance over time. Where detected, significant negative trends tended to be herbaceous or graminoid species. However, these declines were often countered by roughly equivalent increases in invasive shrubs over the same time period, and we only detected overall declines in invasive abundance in two parks in our study. Present in over 30% of plots and responsible for the steepest and greatest number of significant increases, Japanese stiltgrass (Microstegium vimineum) was the most aggressive invader in our study and is a high management priority. Invasive shrubs, especially Japanese barberry (Berberis thunbergii), Japanese honeysuckle (Lonicera japonica), multiflora rose (Rosa multiflora), and wineberry (Rubus phoenicolasius), also increased across multiple parks, and sometimes at the expense of Japanese stiltgrass. Given the added risks to human health from tick-borne diseases, invasive shrubs are a high management priority. While these findings provide critical information to managers for species prioritization, they also demonstrate the incredible management challenge that invasive plants pose in protected areas, particularly since we documented few overall declines in invasive abundance. As parks work to overcome deferred maintenance of infrastructure, our findings suggest that deferred management of natural resources, particularly invasive species, requires similar attention and long-term commitment to reverse these widespread increasing invasive trends.
Divergent, plausible, and relevant climate futures for near- and long-term resource planning
Scenario planning has emerged as a widely used planning process for resource management in situations of consequential, irreducible uncertainty. Because it explicitly incorporates uncertainty, scenario planning is regularly employed in climate change adaptation. An early and essential step in developing scenarios is identifying “climate futures”—descriptions of the physical attributes of plausible future climates that could occur at a specific place and time. Divergent climate futures that describe the broadest possible range of plausible conditions support information needs of decision makers, including understanding the spectrum of potential resource responses to climate change, developing strategies robust to that range, avoiding highly consequential surprises, and averting maladaptation. Here, we discuss three approaches for generating climate futures: a Representative Concentration Pathway (RCP)-ensemble, a quadrant-average, and an individual-projection approach. All are designed to capture relevant uncertainty, but they differ in utility for different applications, complexity, and effort required to implement. Using an application from Big Bend National Park as an example of numerous similar efforts to develop climate futures for National Park Service applications over the past decade, we compare these approaches, focusing on their ability to capture among-projection divergence during early-, mid-, and late-twenty-first century periods to align with near-, mid-, and long-term planning efforts. The quadrant-average approach and especially the individual-projection approach captured a broader range of plausible future conditions than the RCP-ensemble approach, particularly in the near term. Therefore, the individual-projection approach supports decision makers seeking to understand the broadest potential characterization of future conditions. We discuss tradeoffs associated with different climate future approaches and highlight suitable applications.
Deterioration of the Littoral–Benthic Ecosystem Following Recent Expansion of Signal Crayfish (Pacifastacus leniusculus) in the World’s Clearest Large Lake
Some biological invasions can result in algae blooms in the nearshore of clear lakes. We studied if an invasive crayfish (Pacifastacus leniusculus) modified the biomass and community composition of benthic macroinvertebrates and therefore led to a trophic cascade resulting in increased periphyton biomass, elevated littoral primary productivity, and benthic algae bloom in a lake with remarkable transparency [Crater Lake, Oregon, USA]. After quantifying the changes in the spatial distribution of invasive crayfish over a 13-year period, we compared biomass and community composition of littoral–benthic macroinvertebrates, periphyton biovolume, community composition, nutrient limitation, and the development of benthic algae bloom in locations with high and low crayfish density. In addition, we determined if the alteration in community structure resulted in directional changes to gross primary production and ecosystem respiration. The extent of crayfish distribution along the shoreline of Crater Lake doubled over a 13-year period, leaving less than 20% of the shoreline free from crayfish. At high crayfish density sites, benthic macroinvertebrate biomass was 99% lower, and taxa richness was 50% lower than at low crayfish areas. High crayfish sites show tenfold greater periphyton biovolume, sixfold higher periphyton biomass (chlorophyll a), twofold higher metabolic productivity, and the presence of large filamentous algae (Cladophora sp.). The invasion of crayfish had negative consequences for a lake protected under the management of the USA National Park Service, with direct impacts on many levels of ecological organization.
Population estimates for tidal marsh birds of high conservation concern in the northeastern USA from a design-based survey
Tidal marsh loss to anthropogenic environmental impacts and climate change, particularly sea level rise, has and will continue to cause declines in tidal marsh bird populations. Distribution patterns of tidal marsh birds are generally known, yet we lack detailed knowledge of local abundance and regional population sizes, which limits our ability to develop effective conservation strategies that will mitigate the impacts of marsh loss. We designed and implemented a probabilistic sampling framework to establish a regional marsh bird monitoring program, and collected baseline information for breeding tidal marsh birds in the northeastern USA (Maine to Virginia). We sampled 1,780 locations in 2011–2012 to provide regional population estimates for 5 tidal marsh–specialist birds. We estimated that there were 151,000 Clapper Rails (Rallus crepitans; 95% CI = 90,000–212,000), 117,000 Willets (Tringa semipalmata; 95% CI = 88,000–146,000), 5,000 Nelson's Sparrows (Ammodramus nelsoni; 95% CI = 1,000–9,000), 53,000 Saltmarsh Sparrows (A. caudacutus; 95% CI = 37,000–69,000), and 230,000 Seaside Sparrows (A. maritimus; 95% CI = 174,000–286,000) in northeastern tidal marshes. Our baseline assessment can be used to identify local habitat patches important to regional populations for each species and to prioritize conservation actions in targeted areas to maximize tidal marsh bird persistence. The flexibility and probabilistic design of our sampling framework also allow for integration with other monitoring programs (e.g., the U.S. Fish and Wildlife Service Salt Marsh Integrity Program and National Park Service Vital Signs Monitoring Program) so that inferences for these species can be made at multiple spatial scales.
Highlights from 10+ Years of Lichenological Research in Great Smoky Mountains National Park: Celebrating the United States National Park Service Centennial
Great Smoky Mountains National Park is renowned as one of the most biologically diverse tracts of land in North America and is the most visited national park in the United States. The park comprises ∼830 square miles, epitomizes eastern temperate hardwood forests of North America, and serves as a refuge for nearly 20,000 documented species from microbes to plants and mammals. Lichens comprise one particularly diverse group of organisms in the park. In this study, we review data from our 11 years of lichenological research in Great Smoky Mountains National Park. Based on approximately 6,000 new field collections generated, the park checklist now includes 920 species, a 129% increase over estimates made two decades ago. Nearly a quarter of the lichens reported in the park are known from only a single occurence whereas only 7% of the lichens are known from 20 or more occurences. An assessment of commonness/rarity for all 920 species indicates that nearly half of the park's lichens should be considered to be infrequent, rare, or exceptionally rare. We assessed the distributions of all 920 species and found that 54 are endemic to the southeastern United States, 30 are endemic to the southern Appalachians, and eight occur nowhere else than within the confines of the national park. We discuss biogeographical affinities of the park's lichen biota as a whole, delimiting six regional “floristic” connections. Our 11 years of research have resulted in the discovery of several species presumed to be extinct or near-extinct. We make one new combination (Fuscopannaria frullaniae) and describe five species as new to science, each commemorating National Park Service staff instrumental to the completion of the study: Heterodermia langdoniana, Lecanora darlingiae, Lecanora sachsiana, Leprocaulon nicholsiae, and Pertusaria superiana.
Monitoring and evaluating the ecological integrity of forest ecosystems
“Ecological integrity” provides a useful framework for ecologically based monitoring and can provide valuable information for assessing ecosystem condition and management effectiveness. Building on the related concepts of biological integrity and ecological health, ecological integrity is a measure of the composition, structure, and function of an ecosystem in relation to the system's natural or historical range of variation, as well as perturbations caused by natural or anthropogenic agents of change. We have developed a protocol to evaluate the ecological integrity of temperate zone, forested ecosystems, based on long‐term monitoring data. To do so, we identified metrics of status and trend in structure, composition, and function of forests impacted by multiple agents of change. We used data, models, and the scientific literature to interpret and report integrity using “stoplight” symbology, ie “Good” (green), “Caution” (yellow), or “Significant Concern” (red). Preliminary data indicate that forested ecosystems in Acadia National Park have retained ecological integrity across a variety of metrics, but that some aspects of soil chemistry and stand structure indicate potential problems. This protocol was developed for the National Park Service Vital Signs Monitoring Program and holds promise for application in the temperate zone, forested ecosystems of eastern North America.
Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA
Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression. Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were <0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.
The value of reducing uncertainties to support the management of a high‐elevation endemic salamander
Many salamander populations are declining, and methods to determine how best to allocate limited resources to slow or reverse these declines could support land managers in their decision‐making processes. Multiple types of uncertainty may delay management decisions, including when (1) knowledge of a species' ecology is incomplete, (2) climate change effects on environmental covariates are uncertain, and (3) the efficacy of management alternatives is unknown. For management decisions, a value‐of‐information analysis can identify which uncertainties are critical to reduce in order to identify an optimal strategy from a set of possible management actions. If the same management action is optimal across the full range of uncertainties, then resources for research can be redirected toward active management. Using value‐of‐information analyses, we examine the effect of uncertainty on identifying optimal management to maximize the future expected occupancy of Plethodon shenandoah, a Federally Endangered high‐elevation endemic salamander that is threatened by climate change. Out of 11 management actions proposed by National Park Service managers, those that increase environmental moisture are expected to maximize occupancy, and we find that the selection of this action is robust to all the identified uncertainties. We show that, even in systems with multiple sources of large uncertainty, value of information analyses discriminate among investments in species management.
Geographical associations with anthropogenic noise pollution for North American breeding birds
Aim Anthropogenic noise pollution (ANP) is a globally invasive phenomenon impacting natural systems, but most research has occurred at local scales with few species. We investigated continental‐scale breeding season associations with ANP for 322 bird species to test whether small‐scale predictions related to breeding habitat, migratory behaviour, body mass and vocal traits are consistent at broad spatial extents for an extensive group of species. Location Conterminous USA. Time period 2004–2011. Major taxa studied North American breeding birds. Methods We calculated, for each species, the association between the breeding season and ANP, using spatially explicit estimates of ANP from the National Park Service and weekly estimates of probabilities of occurrence based on observations from the eBird citizen‐science database. We evaluated how the association of the breeding season for each species with ANP was related to expectations based on size, migratory behaviour and breeding habitat. For a subset of species, we used vocal trait data for song duration, pitch and complexity to evaluate hypotheses from the birdsong literature related to habitat complexity and sensitivity to ANP. Results Species that breed predominantly in anthropogenic environments were associated with twice the level of ANP (~7.4 dB) as species breeding in forested habitats (~3.2 dB). However, we did not find evidence to suggest that birds with higher‐pitched songs are more likely to be found in areas with higher levels of ANP. Residents and migratory species did not differ in associations with ANP, but songs were less complex among forest‐breeding species than non‐forest‐breeding species and increased in complexity with increasing ANP. Main conclusions Anthropogenic noise pollution is an important factor associated with breeding distributions of bird species in North America. Vocal traits could be useful to understand factors that affect sensitivity to ANP and to predict the potential impact of ANP, although future studies should aim to understand how and why patterns differ across spatial scales.
Contrasting prescription burning and wildfires in California Sierra Nevada national parks and adjacent national forests
History of prescription burning and wildfires in the three Sierra Nevada National Park Service (NPS) parks and adjacent US Forest Service (USFS) forests is presented. Annual prescription (Rx) burns began in 1968 in Sequoia and Kings Canyon National Parks, followed by Yosemite National Park and Lassen Volcanic National Park. During the last third of the 20th century, USFS national forests adjacent to these parks did limited Rx burns, accounting for very little area burned. However, in 2004, an aggressive annual burn program was initiated in these national forests and in the last decade, area burned by planned prescription burns, relative to area protected, was approximately comparable between these NPS and USFS lands. In 1968, the NPS prescription burning program was unique because it coupled planned Rx burns with managing many lightning-ignited fires for resource benefit. From 1968 to 2017, these natural fires managed for resource benefit averaged the same total area burned as planned Rx burns in the three national parks; thus, they have had a substantial impact on total area burned by prescription. In contrast, on USFS lands, most lightning-ignited fires have been managed for suppression, but increasing attention is being paid to managing wildfires for resource benefit.