Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
688
result(s) for
"Ultracentrifugation - methods"
Sort by:
A Non‐Centrifugation Method to Concentrate and Purify Extracellular Vesicles Using Superabsorbent Polymer Followed by Size Exclusion Chromatography
2025
ABSTRACT
Extracellular vesicles (EVs) can be isolated and purified from cell cultures and biofluids using different methodologies. Here, we explored a novel EV isolation approach by combining superabsorbent polymers (SAP) in a dialysis membrane with size exclusion chromatography (SEC) to achieve high concentration and purity of EVs without the use of ultracentrifugation (UC). Suspension HEK293 cells transfected with CD63 coupled with Thermo Luciferase were used to quantify the EV yield and purity. The 500 mL conditioned medium volume was initially reduced by pressure ultrafiltration, followed by UC, SAP or a centrifugal filter unit (CFU). Using either of these methods, the EVs were concentrated to a final volume of approximately 1 mL, with retained functionality. The yield, quantified by luciferase activity, was highest with UC (70%–80%), followed by SAP (60%–70%) and CFU (50%–60%). Further purification of the EVs was performed by iodixanol density cushion (IDC) or SEC (Sepharose CL‐2B or 6B, in either 10 or 20 mL columns). Although the IDC and Sepharose CL‐2B (10 mL) achieved the highest yields, the purity was slightly higher (30%) with IDC. In conclusion, combining SAP concentration with CL‐2B SEC is an alternative and efficient way to isolate EVs without using UC.
Journal Article
A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option?
by
Obi, Patience O.
,
Saleem, Ayesha
,
Sidhom, Karim
in
Animals
,
Chromatography
,
Chromatography, Gel - methods
2020
Extracellular vesicles (EVs) are membranous vesicles secreted by both prokaryotic and eukaryotic cells and play a vital role in intercellular communication. EVs are classified into several subtypes based on their origin, physical characteristics, and biomolecular makeup. Exosomes, a subtype of EVs, are released by the fusion of multivesicular bodies (MVB) with the plasma membrane of the cell. Several methods have been described in literature to isolate exosomes from biofluids including blood, urine, milk, and cell culture media, among others. While differential ultracentrifugation (dUC) has been widely used to isolate exosomes, other techniques including ultrafiltration, precipitating agents such as poly-ethylene glycol (PEG), immunoaffinity capture, microfluidics, and size-exclusion chromatography (SEC) have emerged as credible alternatives with pros and cons associated with each. In this review, we provide a summary of commonly used exosomal isolation techniques with a focus on SEC as an ideal methodology. We evaluate the efficacy of SEC to isolate exosomes from an array of biological fluids, with a particular focus on its application to adipose tissue-derived exosomes. We argue that exosomes isolated via SEC are relatively pure and functional, and that this methodology is reproducible, scalable, inexpensive, and does not require specialized equipment or user expertise. However, it must be noted that while SEC is a good candidate method to isolate exosomes, direct comparative studies are required to support this conclusion.
Journal Article
Isolation and characterization of extracellular vesicle subpopulations from tissues
by
Lässer, Cecilia
,
Lötvall, Jan
,
Crescitelli, Rossella
in
631/1647/2230
,
631/67/327
,
631/80/313
2021
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
This protocol describes how to isolate up to six different subpopulations of extracellular vesicles (EVs) from tissues. The procedure includes detailed instructions for EV characterization using electron microscopy, RNA and protein analysis.
Journal Article
Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography
by
Roura, Santiago
,
Bayes-Genis, Antoni
,
Monguió-Tortajada, Marta
in
Biomarkers
,
Cell signaling
,
Chromatography
2019
Extracellular vesicles (EVs) include a variety of nanosized vesicles released to the extracellular microenvironment by the vast majority of cells transferring bioactive lipids, proteins, mRNA, miRNA or non-coding RNA, as means of intercellular communication. Remarkably, among other fields of research, their use has become promising for immunomodulation, tissue repair and as source for novel disease-specific molecular signatures or biomarkers. However, a major challenge is to define accurate, reliable and easily implemented techniques for EV isolation due to their nanoscale size and high heterogeneity. In this context, differential ultracentrifugation (dUC) has been the most widely used laboratory methodology, but alternative procedures have emerged to allow purer EV preparations with easy implementation. Here, we present and discuss the most used of the different EV isolation methods, focusing on the increasing impact of size exclusion chromatography (SEC) on the resulting EV preparations from in vitro cultured cells-conditioned medium and biological fluids. Comparatively, low protein content and cryo-electron microscopy analysis show that SEC removes most of the overabundant soluble plasma proteins, which are not discarded using dUC or precipitating agents, while being more user friendly and less time-consuming than gradient-based EV isolation. Also, SEC highly maintains the major EVs’ characteristics, including vesicular structure and content, which guarantee forthcoming applications. In sum, together with scaling-up possibilities to increase EV recovery and manufacturing following high-quality standards, SEC could be easily adapted to most laboratories to assist EV-associated biomarker discovery and to deliver innovative cell-free immunomodulatory and pro-regenerative therapies.
Journal Article
A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents
by
Stamer, W. Daniel
,
Khaled, Mariam Lotfy
,
Drewry, Michelle D.
in
Bioindicators
,
Biological markers
,
Biological properties
2017
Exosomes play a role in cell-to-cell signaling and serve as possible biomarkers. Isolating exosomes with reliable quality and substantial concentration is a major challenge. Our purpose is to compare the exosomes extracted by three different exosome isolation kits (miRCURY, ExoQuick, and Invitrogen Total Exosome Isolation Reagent) and differential ultracentrifugation (UC) using six different volumes of a non-cancerous human serum (5 ml, 1 ml, 500 μl, 250 μl, 100 μl, and 50 μl) and three different volumes (1 ml, 500 μl and 100 μl) of six individual commercial serum samples collected from human donors. The smaller starting volumes (100 μl and 50 μl) are used to mimic conditions of limited availability of heterogeneous biological samples. The isolated exosomes were characterized based upon size, quantity, zeta potential, CD63 and CD9 protein expression, and exosomal RNA (exRNA) quality and quantity using several complementary methods: nanoparticle tracking analysis (NTA) with ZetaView, western blot, transmission electron microscopy (TEM), the Agilent Bioanalyzer system, and droplet digital PCR (ddPCR). Our NTA results showed that all isolation techniques produced exosomes within the expected size range (40-150 nm). The three kits, though, produced a significantly higher yield (80-300 fold) of exosomes as compared to UC for all serum volumes, except 5 mL. We also found that exosomes isolated by the different techniques and serum volumes had similar zeta potentials to previous studies. Western blot analysis and TEM immunogold labelling confirmed the expression of two common exosomal protein markers, CD63 and CD9, in samples isolated by all techniques. All exosome isolations yielded high quality exRNA, containing mostly small RNA with a peak between 25 and 200 nucleotides in size. ddPCR results indicated that exosomes isolated from similar serum volumes but different isolation techniques rendered similar concentrations of two selected exRNA: hsa-miR-16 and hsa-miR-451. In summary, the three commercial exosome isolation kits are viable alternatives to UC, even when limited amounts of biological samples are available.
Journal Article
Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods
2015
Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described.
Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC).
Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4°C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4°C, or UC performed at 37°C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin.
Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield.
Journal Article
A review on comparative studies addressing exosome isolation methods from body fluids
by
Martins, Tânia Soares
,
Vaz, Margarida
,
Henriques, Ana Gabriela
in
Biological properties
,
Biological samples
,
Biomarkers
2023
Exosomes emerged as valuable sources of disease biomarkers and new therapeutic tools. However, extracellular vesicles isolation with exosome-like characteristics from certain biofluids is still challenging which can limit their potential use in clinical settings. While ultracentrifugation-based procedures are the gold standard for exosome isolation from cell cultures, no unique and standardized method for exosome isolation from distinct body fluids exists. The complexity, specific composition, and physical properties of each biofluid constitute a technical barrier to obtain reproducible and pure exosome preparations, demanding a detailed characterization of both exosome isolation and characterization methods. Moreover, some isolation procedures can affect downstream proteomic or RNA profiling analysis. This review compiles and discussed a set of comparative studies addressing distinct exosome isolation methods from human biofluids, including cerebrospinal fluid, plasma, serum, saliva, and urine, also focusing on body fluid specific challenges, physical properties, and other potential variation sources. This summarized information will facilitate the choice of exosome isolation methods, based on the type of biological samples available, and hopefully encourage the use of exosomes in translational and clinical research.
Journal Article
SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data
2023
Proper interpretation of analytical ultracentrifugation (AUC) data for purified proteins requires ancillary information and calculations to account for factors such as buoyancy, buffer viscosity, hydration, and temperature. The utility program SEDNTERP has been widely used by the AUC community for this purpose since its introduction in the mid-1990s. Recent extensions to this program (1) allow it to incorporate data from diffusion as well as AUC experiments; and (2) allow it to calculate the refractive index of buffer solutions (based on the solute composition of the buffer), as well as the specific refractive increment (
dn/dc
) of proteins based on their composition. These two extensions should be quite useful to the light scattering community as well as helpful for AUC users. The latest version also adds new terms to the partial specific volume calculations which should improve the accuracy, particularly for smaller proteins and peptides, and can calculate the viscosity of buffers containing heavy isotopes of water. It also uses newer, more accurate equations for the density of water and for the hydrodynamic properties of rods and disks. This article will summarize and review all the equations used in the current program version and the scientific background behind them. It will tabulate the values used to calculate the partial specific volume and
dn/dc
, as well as the polynomial coefficients used in calculating the buffer density and viscosity (most of which have not been previously published), as well as the new ones used in calculating the buffer refractive index.
Journal Article
Characterization of RNA from Exosomes and Other Extracellular Vesicles Isolated by a Novel Spin Column-Based Method
by
Enderle, Daniel
,
Spiel, Alexandra
,
Sprenger-Haussels, Markus
in
Biomarkers
,
Breast cancer
,
Cancer
2015
Exosomes and other extracellular vesicles (commonly referred to as EVs) have generated a lot of attention for their potential applications in both diagnostics and therapeutics. The contents of these vesicles are the subject of intense research, and the relatively recent discovery of RNA inside EVs has raised interest in the biological function of these RNAs as well as their potential as biomarkers for cancer and other diseases. Traditional ultracentrifugation-based protocols to isolate EVs are labor-intensive and subject to significant variability. Various attempts to develop methods with robust, reproducible performance have not yet been completely successful. Here, we report the development and characterization of a spin column-based method for the isolation of total RNA from EVs in serum and plasma. This method isolates highly pure RNA of equal or higher quantity compared to ultracentrifugation, with high specificity for vesicular over non-vesicular RNA. The spin columns have a capacity to handle up to 4 mL sample volume, enabling detection of low-abundance transcripts in serum and plasma. We conclude that the method is an improvement over traditional methods in providing a faster, more standardized way to achieve reliable high quality RNA preparations from EVs in biofluids such as serum and plasma. The first kit utilizing this new method has recently been made available by Qiagen as \"exoRNeasy Serum/Plasma Maxi Kit\".
Journal Article
Framework for rapid comparison of extracellular vesicle isolation methods
by
Walt, David R
,
Norman, Maia
,
Lee, Ju-Hyun
in
Albumins - analysis
,
Antibodies
,
Biochemistry and Chemical Biology
2021
Extracellular vesicles (EVs) are released by all cells into biofluids and hold great promise as reservoirs of disease biomarkers. One of the main challenges in studying EVs is a lack of methods to quantify EVs that are sensitive enough and can differentiate EVs from similarly sized lipoproteins and protein aggregates. We demonstrate the use of ultrasensitive, single-molecule array (Simoa) assays for the quantification of EVs using three widely expressed transmembrane proteins: the tetraspanins CD9, CD63, and CD81. Using Simoa to measure these three EV markers, as well as albumin to measure protein contamination, we were able to compare the relative efficiency and purity of several commonly used EV isolation methods in plasma and cerebrospinal fluid (CSF): ultracentrifugation, precipitation, and size exclusion chromatography (SEC). We further used these assays, all on one platform, to improve SEC isolation from plasma and CSF. Our results highlight the utility of quantifying EV proteins using Simoa and provide a rapid framework for comparing and improving EV isolation methods from biofluids.
Journal Article