Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
164,485
result(s) for
"Uncertainty"
Sort by:
Uncertain : the wisdom and wonder of being unsure
\"Featuring cutting-edge research and in-depth reporting, this paradigm-shifting book shows us how to skillfully confront the unexpected and unknown, and how to seek not-knowing in the service of curiosity, wisdom, and discovery\"-- Provided by publisher.
Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis
2021
Despite progresses in representing different processes, hydrological models remain uncertain. Their uncertainty stems from input and calibration data, model structure, and parameters. In characterizing these sources, their causes, interactions and different uncertainty analysis (UA) methods are reviewed. The commonly used UA methods are categorized into six broad classes: (i) Monte Carlo analysis, (ii) Bayesian statistics, (iii) multi-objective analysis, (iv) least-squares-based inverse modeling, (v) response-surface-based techniques, and (vi) multi-modeling analysis. For each source of uncertainty, the status-quo and applications of these methods are critiqued in gauged catchments where UA is common and in ungauged catchments where both UA and its review are lacking. Compared to parameter uncertainty, UA application for structural uncertainty is limited while input and calibration data uncertainties are mostly unaccounted. Further research is needed to improve the computational efficiency of UA, disentangle and propagate the different sources of uncertainty, improve UA applications to environmental changes and coupled human–natural-hydrologic systems, and ease UA’s applications for practitioners.
Journal Article
Editor's Note
2020
This issue of Law & Society Review goes to press at a time of uncertainty, loss, and dislocation unprecedented in many of the countries where our readers, authors, reviewers, and editorial team reside.
Journal Article
How to measure uncertainty in uncertainty sampling for active learning
by
Shaker, Mohammad Hossein
,
Eyke, Hüllermeier
,
Vu-Linh, Nguyen
in
Active learning
,
Machine learning
,
Sampling
2022
Various strategies for active learning have been proposed in the machine learning literature. In uncertainty sampling, which is among the most popular approaches, the active learner sequentially queries the label of those instances for which its current prediction is maximally uncertain. The predictions as well as the measures used to quantify the degree of uncertainty, such as entropy, are traditionally of a probabilistic nature. Yet, alternative approaches to capturing uncertainty in machine learning, alongside with corresponding uncertainty measures, have been proposed in recent years. In particular, some of these measures seek to distinguish different sources and to separate different types of uncertainty, such as the reducible (epistemic) and the irreducible (aleatoric) part of the total uncertainty in a prediction. The goal of this paper is to elaborate on the usefulness of such measures for uncertainty sampling, and to compare their performance in active learning. To this end, we instantiate uncertainty sampling with different measures, analyze the properties of the sampling strategies thus obtained, and compare them in an experimental study.
Journal Article
Data uncertainty and important measures
The first part of the book defines the concept of uncertainties and the mathematical frameworks that will be used for uncertainty modeling. The application to system reliability assessment illustrates the concept. In the second part, evidential networks as a new tool to model uncertainty in reliability and risk analysis is proposed and described. Then it is applied on SIS performance assessment and in risk analysis of a heat sink. In the third part, Bayesian and evidential networks are used to deal with important measures evaluation in the context of uncertainties.-- Provided by Publisher.