Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,720 result(s) for "Urbanization Maps."
Sort by:
Mapping Methodology of Public Urban Green Spaces Using GIS: An Example of Nagpur City, India
Faced with a lack of fine grain data availability, in rapidly emerging urban centers of developing nations, the study explored a mapping methodology to create thematic map of public urban green space (UGS). Using GIS, a thematic map of Nagpur city, India was prepared. The objective was to prepare spatial data that are relevant for planners and policy makers, with detailed UGS typologies and to update the status of overall availability and distribution of hierarchical recreational green spaces in the city. The spatial and non-spatial data with added attributes gathered through fieldwork resulted in a holistic dataset, with high accuracy of thematic map (0.93 kappa coefficient). The recorded status of different typologies as well as the distribution of recreational UGS shows disparity in the distribution of UGS. The eastern part of the city grossly lacks UGS provisions, which is compensated by the western part with larger availability of natural green spaces. The mapping methodology is novel and effective for recording qualitative status, analyzing their spatial distribution and prioritizing the provisions of UGS. Future research integrating these spatial data with more qualitative research can provide a holistic view on benefits of UGS provisions and thus facilitate effective UGS governance aiming towards better green infrastructure and hence broader urban sustainability.
Atlas of the Gulf States
This Atlas of the Gulf States offers a survey of the contemporary history and recent economic and urban development of the Gulf region. It contains more than 150 maps and graphs concerning the coastal regions of all countries around the Gulf: Iraq, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, and Iran.
Classifying drivers of global forest loss
Forest loss is being driven by various factors, including commodity production, forestry, agriculture, wildfire, and urbanization. Curtis et al. used high-resolution Google Earth imagery to map and classify global forest loss since 2001. Just over a quarter of global forest loss is due to deforestation through permanent land use change for the production of commodities, including beef, soy, palm oil, and wood fiber. Despite regional differences and efforts by governments, conservationists, and corporations to stem the losses, the overall rate of commodity-driven deforestation has not declined since 2001. Science , this issue p. 1108 A high-resolution global map enables a classification of the main drivers of forest loss. Global maps of forest loss depict the scale and magnitude of forest disturbance, yet companies, governments, and nongovernmental organizations need to distinguish permanent conversion (i.e., deforestation) from temporary loss from forestry or wildfire. Using satellite imagery, we developed a forest loss classification model to determine a spatial attribution of forest disturbance to the dominant drivers of land cover and land use change over the period 2001 to 2015. Our results indicate that 27% of global forest loss can be attributed to deforestation through permanent land use change for commodity production. The remaining areas maintained the same land use over 15 years; in those areas, loss was attributed to forestry (26%), shifting agriculture (24%), and wildfire (23%). Despite corporate commitments, the rate of commodity-driven deforestation has not declined. To end deforestation, companies must eliminate 5 million hectares of conversion from supply chains each year.
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
Land cover (LC) determines the energy exchange, water and carbon cycle between Earth's spheres. Accurate LC information is a fundamental parameter for the environment and climate studies. Considering that the LC in China has been altered dramatically with the economic development in the past few decades, sequential and fine-scale LC monitoring is in urgent need. However, currently, fine-resolution annual LC dataset produced by the observational images is generally unavailable for China due to the lack of sufficient training samples and computational capabilities. To deal with this issue, we produced the first Landsat-derived annual China land cover dataset (CLCD) on the Google Earth Engine (GEE) platform, which contains 30 m annual LC and its dynamics in China from 1990 to 2019. We first collected the training samples by combining stable samples extracted from China's land-use/cover datasets (CLUDs) and visually interpreted samples from satellite time-series data, Google Earth and Google Maps. Using 335 709 Landsat images on the GEE, several temporal metrics were constructed and fed to the random forest classifier to obtain classification results. We then proposed a post-processing method incorporating spatial–temporal filtering and logical reasoning to further improve the spatial–temporal consistency of CLCD. Finally, the overall accuracy of CLCD reached 79.31 % based on 5463 visually interpreted samples. A further assessment based on 5131 third-party test samples showed that the overall accuracy of CLCD outperforms that of MCD12Q1, ESACCI_LC, FROM_GLC and GlobeLand30. Besides, we intercompared the CLCD with several Landsat-derived thematic products, which exhibited good consistencies with the Global Forest Change, the Global Surface Water, and three impervious surface products. Based on the CLCD, the trends and patterns of China's LC changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and grassland (−3.29 %), and increase in forest (+4.34 %). In general, CLCD reflected the rapid urbanization and a series of ecological projects (e.g. Gain for Green) in China and revealed the anthropogenic implications on LC under the condition of climate change, signifying its potential application in the global change research. The CLCD dataset introduced in this article is freely available at https://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021).
Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study
Multi-hazard assessment modeling comprises an essential tool in any plan that aims to mitigate the impact of future natural disasters. For a particular area they can be generated by combining assessment maps for different types of natural hazards. In the present study, the analytical hierarchy process (AHP) supported by a Geographical Information System (GIS) was utilized to initially produce assessment maps on hazards from landslides, floods and earthquakes and subsequently to combine them into a single multi-hazard map. Evaluation of the reliability of the proposed model predictions was performed through uncertainty analysis of the variables that we used for producing the final model. The drainage basin of Peneus (Pinios) River (Western Peloponnesus, Greece), an area that is prone to landslides, floods and seismic events, was selected for the implementation of the aforementioned approach. Our findings revealed that the high hazard zones are mainly distributed in the western and north-eastern part of the region under investigation. The calculated multi-hazard map, which corresponds to the potential urban development suitability map of the study area, was classified into five classes, namely of very low, low, moderate, high and very high suitability. The most suitable areas for urban development are distributed mostly in the eastern part, in agreement with the low and very low hazard level for the three considered natural hazards. In addition, by performing uncertainty analysis we showed that the spatial distribution of the suitability zones does not change significantly. Ultimately, the final map was verified using the actual inventory of landslides and floods that affected the study area. In this context, we showed that 80% of the landslide occurrences and all the recorded flood events fall within the boundaries of the moderate, low and very low suitability zones. Consequently, the predictive capacity of the applied method is quite good. Finally, the spatial distribution of the urban areas and the road network were compared with the derived suitability map and the results revealed that approximately 50% of both of them are located within areas susceptible to natural hazards. The proposed approach can be useful for engineers, planners and local authorities in spatial planning and natural hazard management.
WUDAPT
The World Urban Database and Access Portal Tools (WUDAPT) is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analysis purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science toward informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail, and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of local climate zone (LCZ) maps of cities; each LCZ category is associated with a range of values for model-relevant surface descriptors (roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intra-urban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data, and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists.
Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS: Methodological Overview and Case Study Assessment
This study aims at providing expertise for preparing public-based flood mapping and estimating flood risks in growing urban areas. To model and predict the magnitude of flood risk areas, an integrated Analytical Hierarchy Process (AHP) and Geographic Information System (GIS) analysis techniques are used for the case of Eldoret Municipality in Kenya. The flood risk vulnerability mapping follows a multi-parametric approach and integrates some of the flooding causative factors such as rainfall distribution, elevation and slope, drainage network and density, land-use/land-cover and soil type. From the vulnerability mapping, urban flood risk index (UFRI) for the case study area, which is determined by the degree of vulnerability and exposure is also derived. The results are validated using flood depth measurements, with a minimum average difference of 0.01 m and a maximum average difference of 0.37 m in depth of observed flooding in the different flood prone areas. Similarly with respect to area extents, a maximum error of not more than 8% was observed in the highly vulnerable flood zones. In addition, the Consistency Ratio which shows an acceptable level of 0.09 was calculated and further validated the strength of the proposed approach.
Urbanization impacts on flood risks based on urban growth data and coupled flood models
Urbanization increases regional impervious surface area, which generally reduces hydrologic response time and therefore increases flood risk. The objective of this work is to investigate the sensitivities of urban flooding to urban land growth through simulation of flood flows under different urbanization conditions and during different flooding stages. A sub-watershed in Toronto, Canada, with urban land conversion was selected as a test site for this study. In order to investigate the effects of urbanization on changes in urban flood risk, land use maps from six different years (1966, 1971, 1976, 1981, 1986, and 2000) and of six simulated land use scenarios (0%, 20%, 40%, 60, 80%, and 100% impervious surface area percentages) were input into coupled hydrologic and hydraulic models. The results show that urbanization creates higher surface runoff and river discharge rates and shortened times to achieve the peak runoff and discharge. Areas influenced by flash flood and floodplain increases due to urbanization are related not only to overall impervious surface area percentage but also to the spatial distribution of impervious surface coverage. With similar average impervious surface area percentage, land use with spatial variation may aggravate flash flood conditions more intensely compared to spatially uniform land use distribution.