Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,782
result(s) for
"Urea as fertilizer"
Sort by:
Effects of amino acid value-added urea on rice growth and nitrogen utilization
by
Wang, Zongya
,
Li, Ruichao
,
Cheng, Lin
in
Accumulation
,
Agricultural production
,
Amino acid composition
2025
To investigate the impact of amino acid value-added urea on rice growth and nitrogen utilization, this study aimed to provide insights into enhancing the quality and efficiency of traditional nitrogen fertilizers using small molecule active substances. Amino acids were added at 5‰ and 5% levels to create different levels of amino acid value-added urea (AU0.5 and AU5) by blending with urea as test materials. Pot experiments were conducted using ’ Liangyouhua 6 ’ rice as the test crop, with four treatment groups: non-urea (CK), regular urea (U), and amino acid value-added urea (AU0.5, AU5) at two different addition ratios. All treatments, except the control, had the same application rates of nitrogen, phosphorus, and potassium. After harvesting the rice, plant and soil samples were collected from various depths to analyze the nutrient composition of rice, nitrogen content of fertilizer in different soil layers, and 15 N abundance. The results showed that amino acid-added urea significantly enhanced biomass accumulation in different parts of rice. Compared to U, rice straw and grain biomass increased by 25.27% to 32.74% and 21.71% to 27.77% under AU0.5 and AU5 treatments, respectively. In terms of nitrogen application, effective panicle and grain numbers per panicle in AU0.5 and AU5 rice were 17.37% to 21.05% and 8.76% to 15.33% higher than in U, with a significant difference between AU0.5 and U. Furthermore, total aboveground nitrogen and fertilizer nitrogen accumulation in rice treated with AU0.5 and AU5 increased by 3.59% to 5.09% and 3.31% to 8.49%, respectively, compared to U. The accumulation of fertilizer nitrogen in grains and leaves also showed increases of 2.86% to 6.32% and 4.38% to 16.25%, respectively, compared to U. This study found that the application of amino acid value-added urea had a significant impact on the accumulation of fertilizer nitrogen in straw. Further analysis showed that it improved both the apparent nitrogen utilization efficiency and fertilizer nitrogen utilization efficiency. Compared to ordinary urea, the apparent nitrogen utilization efficiency of AU0.5 and AU5 increased by 23.71% and 33.93%, respectively, while the utilization efficiency of 15 N increased by 15.66% and 6.78%, respectively. The residual fertilizer nitrogen in soil treated with amino acid value-added urea was mainly found in the 0-30cm soil layer, reducing nitrogen leaching downwards. Additionally, the nitrogen loss rate was significantly lower (reduced by 12.39%-12.97%) compared to regular urea. The difference between AU0.5 and AU5 was not significant, but AU5 showed an 18.80% higher fertilizer nitrogen residual rate than U. Overall, the study concluded that amino acid value-added urea promoted rice growth by enhancing nitrogen absorption, improving transport to grains, increasing nitrogen fertilizer efficiency, reducing nitrogen leaching, and lowering nitrogen loss rate. The best results were observed with the addition of 5‰ amino acid.
Journal Article
Preparation and Application of Degradable Lignin/Poly (Vinyl Alcohol) Polymers as Urea Slow-Release Coating Materials
2024
The massive amount of water-soluble urea used leads to nutrient loss and environmental pollution in both water and soil. The aim of this study was to develop a novel lignin-based slow-release envelope material that has essential nitrogen and sulfur elements for plants. After the amination reaction with a hydrolysate of yak hair keratin, the coating formulation was obtained by adding different loadings (2, 5, 8, 14 wt%) of aminated lignin (AL) to 5% polyvinyl alcohol (PVA) solution. These formulations were cast into films and characterized for their structure, thermal stability, and mechanical and physicochemical properties. The results showed that the PVA-AL (8%) formulation had good physical and chemical properties in terms of water absorption and mechanical properties, and it showed good degradation in soil with 51% weight loss after 45 days. It is suitable for use as a coating material for fertilizers. Through high-pressure spraying technology, enveloped urea particles with a PVA-AL (8%) solution were obtained, which showed good morphology and slow-release performance. Compared with urea, the highest urea release was only 96.4% after 30 days, conforming to Higuchi model, Ritger–Peppas model, and second-order dynamic model. The continuous nitrogen supply of PVA-AL coated urea to Brassica napus was verified by potting experiments. Therefore, the lignin-based composite can be used as a coating material to produce a new slow-release nitrogen fertilizer for sustainable crop production.
Journal Article
Effects of biochar amendment in two soils on greenhouse gas emissions and crop production
by
Wang, Jinyang
,
Pan, Xiaojian
,
Liu, Yinglie
in
Agricultural production
,
Agricultural soils
,
Agrology
2012
Background Worldwide, there is an increasing interest in using biochar in agriculture to help mitigate global warming and improve crop productivity. Methods The effects of biochar on greenhouse gas (GHG) emissions and rice and wheat yields were assessed using outdoor pot experiments in two different soils (upland soil vs. paddy soil) and an aerobic incubation experiment in the paddy soil. Results Biochar addition to the upland soil increased methane (CH4) emissions by 37 % during the rice season, while it had no effect on CH4 emissions during the wheat season. Biochar amendment decreased nitrous oxide (N2O) emissions up to 54 % and 53 % during the rice and wheat seasons, respectively, but had no effect on the ecosystem respiration in either crop season. In the aerobic incubation experiment, biochar addition significantly decreased N2O emissions and increased carbon dioxide (CO2) emissions from the paddy soil (P<0.01) without urea nitrogen. Biochar addition increased grain yield and biomass if applied with nitrogen fertilizer. Averaged over the two soils, biochar amendments increased the production of rice and wheat by 12 % and 17 %, respectively, and these increases can be partly attributed to the increases in soil nitrate retention. Conclusions Our results demonstrated that although biochar increased the global warming potential at high nitrogen fertilizer application, biochar incorporation significantly decreased N2O emissions while promoting crop production.
Journal Article
Effect of Fertilization Timing on Nitrogen Uptake in Spring Tea of Different Sprouting Phenological Cultivars: A Field Trial with sup.15N Tracing
2025
Applying a top dressing of nitrogen fertilizer before harvesting spring tea is vital for producing high-quality spring tea. However, the interaction between the sprouting phenological characteristics of various cultivars and the timing of top dressing remains unclear. A field trial was conducted to investigate such interaction. Urea enriched with [sup.15]N was applied to soil of the early-sprouting cultivar Jia-ming-1 (JM1) and the late-sprouting cultivar Tie-guan-yin (TGY) on 29 January (early application, EApp) or 10 March (late application, LApp), respectively. The bud density and yield of young spring shoots were significantly decreased in LApp compared to EApp. Such differences were more remarkable in the early-sprouting cultivar (JM1) than in the late-sprouting cultivar (TGY). The N[sub.dff] (N derived from [sup.15]N-enriched urea) in mature leaves and young spring shoots as well as the amount of [sup.15]N in young spring shoots were all higher in EApp than in LApp. N[sub.dff] in both mature leaves (R [sup.2] = 0.99, p < 0.001) and young spring shoots (R [sup.2] = 0.61–0.89, p < 0.01) could be well predicted by the growing degree days of the duration between the N fertilization and sampling. N[sub.dff] and [sup.15]N concentrations in mature leaves were significantly correlated with the content of nitrate and the ratio of ammonium to total inorganic nitrogen. Partial least squares path modeling revealed that thermal condition directly affected soil N supply and soil pH and thereby affected N[sub.dff] in mature leaves and young spring shoots. Our findings highlight the importance of early pre-spring topdressing of N fertilizer to improve the yield and N use efficiency of spring tea in both early- and late-sprouting tea cultivars. The work identified a synergistic effect of N uptake by tea plants, N transformation, and soil pH related to the thermo-conditions of early and late N topdressing.
Journal Article