Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,206
result(s) for
"Uria"
Sort by:
Year-round distribution of Northeast Atlantic seabird populations: applications for population management and marine spatial planning
2021
Tracking data of marine predators are increasingly used in marine spatial management. We developed a spatial dataset with estimates of the monthly distribution of six pelagic seabird species breeding in the Northeast Atlantic. The dataset is based on year-round global location sensor (GLS) tracking data of 2356 adult seabirds from 2006-2019 from a network of seabird colonies, data describing the physical environment, and data on seabird population sizes. Tracking and environmental data were combined in monthly species distribution models (SDMs). Cross-validations were used to assess the transferability of models between years and breeding locations. The analyses showed that birds from colonies close to each other (<500 km apart) used the same nonbreeding habitats, while birds from distant colonies (>1000 km) used colony-specific, and in many cases, non-overlapping habitats. Based on these results, the SDM from the nearest model colony was used to predict the distribution of all seabird colonies lying within a species-specific cut-off distance (400-500 km). The uncertainties in predictions were estimated by cluster bootstrap sampling. The resulting dataset consists of 4692 map layers, each layer predicting the densities of birds from a given species, colony and month across the North Atlantic. The dataset represents the annual distribution of 23.5 million adult pelagic seabirds, or 87% of the Northeast Atlantic breeding population of the study species. We show how the dataset can be used in population and spatial management applications, including the detection of population-specific nonbreeding habitats and identifying populations influenced by marine protected areas.
Journal Article
Species and spatial variation in the effects of sea ice on Arctic seabird populations
2021
Aim The Arctic is warming rapidly, and sea ice is disappearing. This is expected to have profound effects on Arctic wildlife. However, empirical evidence that this decline in sea ice is associated with a decline in Arctic wildlife populations is lacking. Location Svalbard Archipelago. Methods Using long‐term time series data (1988–2018) from two fjords in West Spitsbergen (Svalbard), we tested whether or not sea ice concentration was associated with the population size of two of the most common Arctic seabirds, the Brünnich's guillemot (Uria lomvia) and black‐legged kittiwake (Rissa tridactyla). Results We found that the size of guillemot and kittiwake colonies has declined on Svalbard from the mid‐1990s onwards, though the shapes of these trajectories were not linear and kittiwake colony size has stabilized or even increased in recent years. sea ice concentration in West Spitsbergen also declined during the study period. Independent of these long‐term trends, sea ice concentration was positively and significantly associated with seabird colony size with a 2‐year lag, though variations in sea ice explained only a small proportion of the changes in colony size. One likely mechanism linking sea ice and seabird population size involves changes in the food chain, with poor sea ice conditions in a given year leading to low food availability 2 years later. This would affect breeding probability and hence colony size for kittiwakes and guillemots. This relationship between sea ice and colony size was the same in both fjords for guillemots. In the case of kittiwakes, it was not apparent in the fjord where productive glacier fronts, intensely used by kittiwakes to forage, may have buffered the effects of changes in sea ice. Main conclusions Our study provides evidence that the ongoing decline in Arctic sea ice plays a role in Arctic seabird population trajectories. However, sea ice disappearance on the breeding grounds was likely not the main driver of changes in seabird populations.
Journal Article
Variation in growth drives the duration of parental care
by
Linnebjerg, Jannie F.
,
Burke, Chantelle
,
Gaston, Anthony J.
in
Biologi
,
Biological Sciences
,
Evolutionary Biology
2017
The duration of parental care in animals varies widely, from none to lifelong. Such variation is typically thought to represent a trade-off between growth and safety. Seabirds show wide variation in the age at which offspring leave the nest, making them ideal to test the idea that a trade-off between high energy gain at sea and high safety at the nest drives variation in departure age (Ydenberg’s model). To directly test the model assumptions, we attached time-depth recorders to murre parents (fathers [which do all parental care at sea] and mothers; N = 14 of each). Except for the initial mortality experienced by chicks departing from the colony, the mortality rate at sea was similar to the mortality rate at the colony. However, energy gained by the chick per day was ∼2.1 times as high at sea compared with at the colony because the father spent more time foraging, since he no longer needed to spend time commuting to and from the colony. Compared with the mother, the father spent ∼2.6 times as much time divingper day and dived in lower-quality foraging patches. We provide a simple model for optimal departure date based on only (1) the difference in growth rate at sea relative to the colony and (2) the assumption that transition mortality from one life-history stage to the other is size dependent. Apparently, large variation in the duration of parental care can arise simply as a result of variation in energy gain without any trade-off with safety.
Journal Article
Post‐colony swimming migration in the genus Uria
2024
Seabirds within the Alcini subfamily have a unique breeding strategy, with their offspring leaving the colony flightless, at only a quarter of adult body size, accompanied by the father and fledge (become independent) out at sea. In this study we test several hypotheses about this elusive second part of the breeding season, termed swimming migration, for common guillemots Uria aalge and Brünnich's guillemots Uria lomvia by tracking 34 chicks (of which 17 transmitted data) equipped with satellite linked Argos PTTs (Platform Transmitter Terminals) at Bjørnøya, a major colony in the European Arctic. All chicks, presumably accompanied by their fathers, swam actively towards species‐specific autumn staging areas, rather than passively drifted away from the colony with a swim speed generally twice that observed of surrounding surface currents. They swam fastest during the first two days after departure. This coincides with the only time they actively crossed a current and the time needed to leave the area of prey depletion around the colony. They otherwise took advantage of available currents, while still swimming actively during the remainder of their migration towards species‐specific autumn staging areas. These staging areas corresponded to areas used by breeding adults during their moulting period (as confirmed by complementary light‐level logger tracking of adults), rather than being specific nursery areas. Migration duration correlated with distance resulting in species‐specific migration periods that were only a fraction of previously reported fledging periods out at sea, indicating that not only the swimming migration, but also known adult autumn staging regions constitute in effect breeding areas. This work has important implications for our understanding of population dynamics within the Alcini subfamily and the management of these species under multiple threats, while providing the foundation to investigate swimming migrations across their distributional range.
Journal Article
Cold comfort: Arctic seabirds find refugia from climate change and potential competition in marginal ice zones and fjords
by
Lindberg, Thórarinsson Thorkell
,
Larsen, Thomas
,
Hansen, Erpur Snær
in
Abundance
,
Access
,
Aquatic birds
2022
Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich’s guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich’s guillemot, with implications for conservation status and ecosystem services.
Journal Article
Sea ice extent and phenology influence breeding of high-Arctic seabirds: 4 decades of monitoring in Nunavut, Canada
2022
Seabirds breeding in the high Arctic contend with variable annual sea ice conditions, with important consequences depending on a species’ unique reproductive and foraging ecology. We assessed the influence of sea ice extent and phenology on seabird breeding biology using monitoring data collected for northern fulmar (Fulmarus glacialis), glaucous gull (Larus hyperboreus), black-legged kittiwake (Rissa tridactyla), and thick-billed murre (Uria lomvia) breeding at Prince Leopold Island, Nunavut, Canada over 4 decades. We expected that years of later sea ice break-up and greater ice cover around the colony would create greater challenges to foraging and could result in delayed nest initiation, decreased colony attendance, and lower nesting success, but with distinct responses from each species. We also tested for time-lagged effects of ice conditions, where sea ice in a given year could impact food availability or juvenile recruitment in later years. Ice conditions around the colony exhibited no significant overall temporal trends or changepoints over the past 50 years (1970–2021), while counts of kittiwakes and murres increased over the study period 1975–2013. No trends were evident in counts of fulmars or gulls or in egg-laying dates or nest success for any species. However, three species (all but glaucous gulls) exhibited unique responses between breeding metrics and sea ice, highlighting how breeding decisions and outcomes may differ among species under the same environmental conditions in a given year. Time-lagged effects were only detected for kittiwake nest counts, where the date of spring ice break-up around the colony was negatively associated with counts at a 5-year lag. Greater distances to open water were associated with lower colony attendance by fulmars and later nest initiation by kittiwakes and murres. Our analyses provide additional insights to effects of sea ice on high-Arctic seabird breeding ecology, which will be useful in predicting and planning for the complex effects of a changing climate and changing human pressures on this high-latitude ecosystem and for the management of high-Arctic marine-protected areas.
Journal Article
Sympatric Breeding Auks Shift between Dietary and Spatial Resource Partitioning across the Annual Cycle
by
Linnebjerg, Jannie Fries
,
Reuleaux, Anna
,
Mosbech, Anders
in
Adaptation
,
Adaptations
,
Alca torda
2013
When species competing for the same resources coexist, some segregation in the way they utilize those resources is expected. However, little is known about how closely related sympatric breeding species segregate outside the breeding season. We investigated the annual segregation of three closely related seabirds (razorbill Alcatorda, common guillemot Uriaaalge and Brünnich's guillemot U. lomvia) breeding at the same colony in Southwest Greenland. By combining GPS and geolocation (GLS) tracking with dive depth and stable isotope analyses, we compared spatial and dietary resource partitioning. During the breeding season, we found the three species to segregate in diet and/or dive depth, but less in foraging area. During both the post-breeding and pre-breeding periods, the three species had an increased overlap in diet, but were dispersed over a larger spatial scale. Dive depths were similar across the annual cycle, suggesting morphological adaptations fixed by evolution. Prey choice, on the other hand, seemed much more flexible and therefore more likely to be affected by the immediate presence of potential competitors.
Journal Article
Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet
by
Grémillet, David
,
Tremblay, Yann
,
Grønningsæter, Eirik
in
Aquatic birds
,
Arctic region
,
breeding
2013
At the onset of winter, warm‐blooded animals inhabiting seasonal environments may remain resident and face poorer climatic conditions, or migrate towards more favourable habitats. While the origins and evolution of migratory choices have been extensively studied, their consequences on avian energy balance and winter survival are poorly understood, especially in species difficult to observe such as seabirds. Using miniaturized geolocators, time‐depth recorders and a mechanistic model, we investigated the migratory strategies, the activity levels and the energy expenditure of the closely‐related, sympatrically breeding Brünnich's guillemots Uria lomvia and common guillemots Uria aalge from Bjørnøya, Svalbard. The two guillemot species from this region present contrasting migratory strategies and wintering quarters: Brünnich's guillemots migrate across the North Atlantic to overwinter off southeast Greenland and Faroe Islands, while common guillemots remain resident in the Barents, the Norwegian and the White Seas. Results show that both species display a marked behavioural plasticity to respond to environmental constraint, notably modulating their foraging effort and diving behaviour. Nevertheless, we provide evidence that the migratory strategy adopted by guillemots can have important consequences for their energy balance. Overall energy expenditure estimated for the non‐breeding season is relatively similar between both species, suggesting that both southward migration and high‐arctic winter residency are energetically equivalent and suitable strategies. However, we also demonstrate that the migratory strategy adopted by Brünnich's guillemots allows them to have reduced daily energy expenditures during the challenging winter period. We therefore speculate that ‘resident’ common guillemots are more vulnerable than ‘migrating’ Brünnich's guillemots to harsh winter environmental conditions.
Journal Article
Individual Winter Movement Strategies in Two Species of Murre (Uria spp.) in the Northwest Atlantic
by
Gaston, Anthony J.
,
Robertson, Gregory J.
,
Phillips, Richard A.
in
Animal behavior
,
Animal cognition
,
Animal Migration - physiology
2014
Individual wintering strategies and patterns of winter site fidelity in successive years are highly variable among seabird species. Yet, an understanding of consistency in timing of movements and the degree of site fidelity is essential for assessing how seabird populations might be influenced by, and respond to, changing conditions on wintering grounds. To explore annual variation in migratory movements and wintering areas, we applied bird-borne geolocators on Thick-billed Murres (Uria lomvia, n = 19) and Common Murres (U. aalge, n = 20) from 5 colonies in the Northwest Atlantic for 2-4 consecutive years. Thick-billed Murres ranged widely and among-individual wintering strategies were highly variable, whereas most Common Murres wintered relatively near their colonies, with among-individual variation represented more by the relative use of inshore vs. offshore habitat. Within individuals, some aspects of the wintering strategy were more repeatable than others: colony arrival and departure dates were more consistent by individual Common than Thick-billed Murres, while the sizes of home ranges (95% utilization distributions) and distances travelled to wintering area were more repeatable for both species. In consecutive years, individual home ranges overlapped from 0-64% (Thick-billed Murres) and 0-95% (Common Murres); and the winter centroids were just 239 km and 169 km apart (respectively). Over the 3-4 year timescale of our study, individuals employed either fixed or flexible wintering strategies; although most birds showed high winter site fidelity, some shifted core ranges after 2 or 3 years. The capacity among seabird species for a combination of fidelity and flexibility, in which individuals may choose from a range of alternative strategies, deserves further, longer term attention.
Journal Article
Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species
by
Mavor, Roddy A.
,
Votier, Stephen C.
,
Guilford, Tim
in
Alca torda
,
animal tracking
,
anthropogenic activities
2017
Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the distribution at sea of each species at both the colony and regional level. Space use by all four species' British breeding populations is concentrated in the coastal waters of Scotland, highlighting the need for robust conservation measures in this area. The techniques we present are applicable to any CCPF.
Journal Article