Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,144 result(s) for "Urinary Tract Infections - drug therapy"
Sort by:
Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial
New antibiotics are needed for the treatment of patients with life-threatening carbapenem-resistant Gram-negative infections. We assessed the efficacy and safety of cefiderocol versus best available therapy in adults with serious carbapenem-resistant Gram-negative infections. We did a randomised, open-label, multicentre, parallel-group, pathogen-focused, descriptive, phase 3 study in 95 hospitals in 16 countries in North America, South America, Europe, and Asia. We enrolled patients aged 18 years or older admitted to hospital with nosocomial pneumonia, bloodstream infections or sepsis, or complicated urinary tract infections (UTI), and evidence of a carbapenem-resistant Gram-negative pathogen. Participants were randomly assigned (2:1 by interactive web or voice response system) to receive either a 3-h intravenous infusion of cefiderocol 2 g every 8 h or best available therapy (pre-specified by the investigator before randomisation and comprised of a maximum of three drugs) for 7–14 days. For patients with pneumonia or bloodstream infection or sepsis, cefiderocol treatment could be combined with one adjunctive antibiotic (excluding polymyxins, cephalosporins, and carbapenems). The primary endpoint for patients with nosocomial pneumonia or bloodstream infection or sepsis was clinical cure at test of cure (7 days [plus or minus 2] after the end of treatment) in the carbapenem-resistant microbiological intention-to-treat population (ITT; ie, patients with a confirmed carbapenem-resistant Gram-negative pathogen receiving at least one dose of study drug). For patients with complicated UTI, the primary endpoint was microbiological eradication at test of cure in the carbapenem-resistant microbiological ITT population. Safety was evaluated in the safety population, consisting of all patients who received at least one dose of study drug. Mortality was reported through to the end of study visit (28 days [plus or minus 3] after the end of treatment). Summary statistics, including within-arm 95% CIs calculated using the Clopper-Pearson method, were collected for the primary and safety endpoints. This trial is registered with ClinicalTrials.gov (NCT02714595) and EudraCT (2015-004703-23). Between Sept 7, 2016, and April 22, 2019, we randomly assigned 152 patients to treatment, 101 to cefiderocol, 51 to best available therapy. 150 patients received treatment: 101 cefiderocol (85 [85%] received monotherapy) and 49 best available therapy (30 [61%] received combination therapy). In 118 patients in the carbapenem-resistant microbiological ITT population, the most frequent carbapenem-resistant pathogens were Acinetobacter baumannii (in 54 patients [46%]), Klebsiella pneumoniae (in 39 patients [33%]), and Pseudomonas aeruginosa (in 22 patients [19%]). In the same population, for patients with nosocomial pneumonia, clinical cure was achieved by 20 (50%, 95% CI 33·8–66·2) of 40 patients in the cefiderocol group and ten (53%, 28·9–75·6) of 19 patients in the best available therapy group; for patients with bloodstream infection or sepsis, clinical cure was achieved by ten (43%, 23·2–65·5) of 23 patients in the cefiderocol group and six (43%, 17·7–71·1) of 14 patients in the best available therapy group. For patients with complicated UTIs, microbiological eradication was achieved by nine (53%, 27·8–77·0) of 17 patients in the cefiderocol group and one (20%, 0·5–71·6) of five patients in the best available therapy group. In the safety population, treatment-emergent adverse events were noted for 91% (92 patients of 101) of the cefiderocol group and 96% (47 patients of 49) of the best available therapy group. 34 (34%) of 101 patients receiving cefiderocol and nine (18%) of 49 patients receiving best available therapy died by the end of the study; one of these deaths (in the best available therapy group) was considered to be related to the study drug. Cefiderocol had similar clinical and microbiological efficacy to best available therapy in this heterogeneous patient population with infections caused by carbapenem-resistant Gram-negative bacteria. Numerically more deaths occurred in the cefiderocol group, primarily in the patient subset with Acinetobacter spp infections. Collectively, the findings from this study support cefiderocol as an option for the treatment of carbapenem-resistant infections in patients with limited treatment options. Shionogi.
Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial
Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. In the context of increasing antibiotic resistance, finding alternative treatments for UTIs is a top priority. We aimed to determine whether intravesical bacteriophage therapy with a commercial bacteriophage cocktail is effective in treating UTI. We did a randomised, placebo-controlled, clinical trial, at the Alexander Tsulukidze National Centre of Urology, Tbilisi, Georgia. Men older than 18 years of age, who were scheduled for transurethral resection of the prostate (TURP), with complicated UTI or recurrent uncomplicated UTI but no signs of systemic infection, were allocated by block randomisation in a 1:1:1 ratio to receive intravesical Pyo bacteriophage (Pyophage; 20 mL) or intravesical placebo solution (20 mL) in a double-blind manner twice daily for 7 days, or systemically applied antibiotics (according to sensitivities) as an open-label standard-of-care comparator. Urine culture was taken via urinary catheter at the end of treatment (ie, day 7) or at withdrawal from the trial. The primary outcome was microbiological treatment response after 7 days of treatment, measured by urine culture; secondary outcomes included clinical and safety parameters during the treatment period. Analyses were done in a modified intention-to-treat population of patients having received at least one dose of the allocated treatment regimen. This trial is registered with ClinicalTrials.gov, NCT03140085. Between June 2, 2017, and Dec 14, 2018, 474 patients were screened for eligibility and 113 (24%) patients were randomly assigned to treatment (37 to Pyophage, 38 to placebo, and 38 to antibiotic treatment). 97 patients (28 Pyophage, 32 placebo, 37 antibiotics) received at least one dose of their allocated treatment and were included in the primary analysis. Treatment success rates did not differ between groups. Normalisation of urine culture was achieved in five (18%) of 28 patients in the Pyophage group compared with nine (28%) of 32 patients in the placebo group (odds ratio [OR] 1·60 [95% CI 0·45–5·71]; p=0·47) and 13 (35%) of 37 patients in the antibiotic group (2·66 [0·79–8·82]; p=0·11). Adverse events occurred in six (21%) of 28 patients in the Pyophage group compared with 13 (41%) of 32 patients in the placebo group (OR 0·36 [95% CI 0·11–1·17]; p=0·089) and 11 (30%) of 37 patients in the antibiotic group (0·66 [0·21–2·07]; p=0·47). Intravesical bacteriophage therapy was non-inferior to standard-of-care antibiotic treatment, but was not superior to placebo bladder irrigation, in terms of efficacy or safety in treating UTIs in patients undergoing TURP. Moreover, the bacteriophage safety profile seems to be favourable. Although bacteriophages are not yet a recognised or approved treatment option for UTIs, this trial provides new insight to optimise the design of further large-scale clinical studies to define the role of bacteriophages in UTI treatment. Swiss Continence Foundation, the Swiss National Science Foundation, and the Swiss Agency for Development and Cooperation. For the Georgian and German translations of the abstract see Supplementary Materials section.
Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial
The rate of antibiotic resistance continues to grow, outpacing small-molecule-drug development efforts. Novel therapies are needed to combat this growing threat, particularly for the treatment of urinary tract infections (UTIs), which are one of the largest contributors to antibiotic use and associated antibiotic resistance. LBP-EC01 is a novel, genetically enhanced, six-bacteriophage cocktail developed by Locus Biosciences (Morrisville, NC, USA) to address UTIs caused by Escherichia coli, regardless of antibiotic resistance status. In this first part of the two-part phase 2 ELIMINATE trial, we aimed to define a dosing regimen of LBP-EC01 for the treatment of uncomplicated UTIs that could advance to the second, randomised, controlled, double-blinded portion of the study. This first part of ELIMINATE is a randomised, uncontrolled, open-label, phase 2 trial that took place in six private clinical sites in the USA. Eligible participants were female by self-identification, aged between 18 years and 70 years, and had an uncomplicated UTI at the time of enrolment, as well as a history of at least one drug-resistant UTI caused by E coli within the 12 months before enrolment. Participants were initially randomised in a 1:1:1 ratio into three treatment groups, but this part of the trial was terminated on the recommendation of the safety review committee after a non-serious tolerability signal was observed based on systemic drug exposure. A protocol update was then implemented, comprised of three new treatment groups. Groups A to C were dosed with intraurethral 2 × 1012 plaque-forming units (PFU) of LBP-EC01 on days 1 and 2 by catheter, plus one of three intravenous doses daily on days 1–3 of LBP-EC01 (1 mL of 1 × 1010 PFU intravenous bolus in group A, 1 mL of 1 × 109 PFU intravenous bolus in group B, and a 2 h 1 × 1011 PFU intravenous infusion in 100 mL of sodium lactate solution in group C). In all groups, oral trimethoprim–sulfamethoxazole (TMP–SMX; 160 mg and 800 mg) was given twice daily on days 1–3. The primary outcome was the level of LBP-EC01 in urine and blood across the treatment period and over 48 h after the last dose and was assessed in patients in the intention-to-treat (ITT) population who received at least one dose of LBP-EC01 and had concentration–time data available throughout the days 1–3 dosing period (pharmacokinetic population). Safety, a secondary endpoint, was assessed in enrolled patients who received at least one dose of study drug (safety population). As exploratory pharmacodynamic endpoints, we assessed E coli levels in urine and clinical symptoms of UTI in patients with at least 1·0 × 105 colony-forming units per mL E coli in urine at baseline who took at least one dose of study drug and completed their day 10 test-of-cure assessment (pharmacodynamic-evaluable population). This trial is registered with ClinicalTrials.gov, NCT05488340, and is ongoing. Between Aug 22, 2022, and Aug 28, 2023, 44 patients were screened for eligibility, and 39 were randomly assigned (ITT population). Initially, eight participants were assigned to the first three groups. After the protocol was updated, 31 participants were allocated into groups A (11 patients), B (ten patients), and C (ten patients). One patient in group C withdrew consent on day 2 for personal reasons, but as she had received the first dose of the study drug was included in the modified ITT population. Maximum urine drug concentrations were consistent across intraurethral dosing, with a maximum mean concentration of 6·3 × 108 PFU per mL (geometric mean 8·8 log10 PFU per mL and geometric SD [gSD] 0·3). Blood plasma level of bacteriophages was intravenous dose-dependent, with maximum mean concentrations of 4·0 × 103 (geometric mean 3·6 log10 PFU per mL [gSD 1·5]) in group A, 2·5 × 103 (3·4 log10 PFU per mL [1·7]) in group B, and 8·0 × 105 (5·9 log10 PFU per mL [1·4]) in group C. No serious adverse events were observed. 44 adverse events were reported across 18 (46%) of the 39 participants in the safety population, with more adverse events seen with higher intravenous doses. Three patients in groups 1 to 3 and one patient in group C, all of whom received 1 × 1011 LBP-EC01 intravenously, had non-serious tachycardia and afebrile chills after the second intravenous dose. A rapid reduction of E coli in urine was observed by 4 h after the first treatment and maintained at day 10 in all 16 evaluable patients; these individuals had complete resolution of UTI symptoms by day 10. A regimen consisting of 2 days of intraurethral LBP-EC01 and 3 days of concurrent intravenous LBP-EC01 (1 × 1010 PFU) and oral TMP–SMX twice a day was well tolerated, with consistent pharmacokinetic profiles in urine and blood. LBP-EC01 and TMP–SMX dosing resulted in a rapid and durable reduction of E coli, with corresponding elimination of clinical symptoms in evaluable patients. LBP-EC01 holds promise in providing an alternative therapy for uncomplicated UTIs, with further testing of the group A dosing regimen planned in the controlled, double-blind, second part of ELIMINATE. Federal funds from the US Department of Health and Human Services, Administration for Strategic Preparedness and Response, and Biomedical Advanced Research and Development Authority (BARDA).
Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study
Carbapenems are frequently the last line of defence in serious infections due to multidrug-resistant Gram-negative bacteria, but their use is threatened by the growing prevalence of carbapenemase-producing pathogens. Ceftazidime-avibactam is a potential new agent for use in such infections. We aimed to assess the efficacy, safety, and tolerability of ceftazidime-avibactam compared with best available therapy in patients with complicated urinary tract infection or complicated intra-abdominal infection due to ceftazidime-resistant Gram-negative pathogens. REPRISE was a pathogen-directed, international, randomised, open-label, phase 3 trial that recruited patients from hospitals across 16 countries worldwide. Eligible patients were aged 18–90 years with complicated urinary tract infection or complicated intra-abdominal infection caused by ceftazidime-resistant Enterobacteriaceae or Pseudomonas aeruginosa. Patients were randomised (1:1) to 5–21 days of treatment with either ceftazidime-avibactam (a combination of 2000 mg ceftazidime plus 500 mg avibactam, administered via a 2-h intravenous infusion every 8 h) or best available therapy. The primary endpoint was clinical response at the test-of-cure visit, 7–10 days after last infusion of study therapy, analysed in all patients who had at least one ceftazidime-resistant Gram-negative pathogen, as confirmed by the central laboratory, and who received at least one dose of study drug. Safety endpoints were assessed in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT01644643. Between Jan 7, 2013, and Aug 29, 2014, 333 patients were randomly assigned, 165 to ceftazidime-avibactam and 168 to best available therapy. Of these, 154 assigned to ceftazidime-avibactam (144 with complicated urinary tract infection and ten with complicated intra-abdominal infection) and 148 assigned to best available therapy (137 with complicated urinary tract infection and 11 with complicated intra-abdominal infection) were analysed for the primary outcome. 163 (97%) of 168 patients in the best available therapy group received a carbapenem, 161 (96%) as monotherapy. The overall proportions of patients with a clinical cure at the test-of-cure visit were similar with ceftazidime-avibactam (140 [91%; 95% CI 85·6–94·7] of 154 patients) and best available therapy (135 [91%; 85·9–95·0] of 148 patients). 51 (31%) of 164 patients in the ceftazidime-avibactam group and 66 (39%) of 168 in the best available therapy group had an adverse event, most of which were mild or moderate in intensity. Gastrointestinal disorders were the most frequently reported treatment-emergent adverse events with both ceftazidime-avibactam (21 [13%] of 164 patients) and best available therapy (30 [18%] of 168 patients). No new safety concerns were identified for ceftazidime-avibactam. These results provide evidence of the efficacy of ceftazidime-avibactam as a potential alternative to carbapenems in patients with ceftazidime-resistant Enterobacteriaceae and P aeruginosa. AstraZeneca.
Once-Daily Plazomicin for Complicated Urinary Tract Infections
Treatment options for antimicrobial-resistant, gram-negative pathogens are limited. Plazomicin is an aminoglycoside antimicrobial agent that is resistant to aminoglycoside-modifying enzymes. In this trial involving 609 patients with complicated urinary tract infections, plazomicin was noninferior to meropenem.
Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial
Carbapenem-resistant Gram-negative bacteria represent the highest priority for addressing global antibiotic resistance. Cefiderocol (S-649266), a new siderophore cephalosporin, has broad activity against Enterobacteriaceae and non-fermenting bacteria, such as Pseudomonas aeruginosa and Acinetobacter baumannii, including carbapenem-resistant strains. We assessed the efficacy and safety of cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infection in patients at risk of multidrug-resistant Gram-negative infections. We did a phase 2, multicentre, double-blind, parallel-group non-inferiority trial at 67 hospitals in 15 countries. Adults (≥18 years) admitted to hospital with a clinical diagnosis of complicated urinary tract infection with or without pyelonephritis or those with acute uncomplicated pyelonephritis were randomly assigned (2:1) by an interactive web or voice response system to receive 1 h intravenous infusions of cefiderocol (2 g) or imipenem-cilastatin (1 g each) three times daily, every 8 h for 7–14 days. Patients were excluded if they had a baseline urine culture with more than two uropathogens, a fungal urinary tract infection, or pathogens known to be carbapenem resistant. The primary endpoint was the composite of clinical and microbiological outcomes at test of cure (ie, 7 days after treatment cessation), which was used to establish non-inferiority (15% and 20% margins) of cefiderocol versus imipenem-cilastatin. The primary efficacy analysis was done on a modified intention-to-treat population, which included all randomly assigned individuals who received at least one dose of study drug and had a qualifying Gram-negative uropathogen (≥1 × 105 colony-forming units [CFU]/mL). Safety was assessed in all randomly assigned individuals who received at least one dose of study drug, according to the treatment they received. This study is registered with ClinicalTrials.gov, number NCT02321800. Between Feb 5, 2015, and Aug 16, 2016, 452 patients were randomly assigned to cefiderocol (n=303) or imipenem-cilastatin (n=149), of whom 448 patients (n=300 in the cefiderocol group; n=148 in the imipenem-cilastatin group) received treatment. 371 patients (n=252 patients in the cefiderocol group; n=119 patients in the imipenem-cilastatin group) had qualifying Gram-negative uropathogen (≥1 × 105 CFU/mL) and were included in the primary efficacy analysis. At test of cure, the primary efficacy endpoint was achieved by 183 (73%) of 252 patients in the cefiderocol group and 65 (55%) of 119 patients in the imipenem-cilastatin group, with an adjusted treatment difference of 18·58% (95% CI 8·23–28·92; p=0·0004), establishing the non-inferiority of cefiderocol. Cefiderocol was well tolerated. Adverse events occurred in 122 (41%) of 300 patients in the cefiderocol group and 76 (51%) of 148 patients in the imipenem-cilastatin group, with gastrointestinal disorders (ie, diarrhoea, constipation, nausea, vomiting, and abdominal pain) the most common adverse events for both treatment groups (35 [12%] patients in the cefiderocol group and 27 [18%] patients in the imipenem-cilastatin group). Intravenous infusion of cefiderocol (2 g) three times daily was non-inferior compared with imipenem-cilastatin (1 g each) for the treatment of complicated urinary tract infection in people with multidrug-resistant Gram-negative infections. The results of this study will provide the basis for submission of a New Drug Application to the US Food and Drug Administration. Clinical trials of hospital-acquired pneumonia and carbapenem-resistant infections are ongoing. Shionogi & Co Ltd, Shionogi Inc.
Cefepime–Taniborbactam in Complicated Urinary Tract Infection
In patients with complicated urinary tract infection, clinical and microbiologic treatment success was significantly better with cefepime–taniborbactam (β-lactam and β-lactamase inhibitor) than with meropenem.
Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI)
Treatment of complicated urinary-tract infections is challenging due to rising antimicrobial resistance. We assessed the efficacy and safety of ceftolozane-tazobactam, a novel antibacterial with Gram-negative activity, in the treatment of patients with complicated lower-urinary-tract infections or pyelonephritis. ASPECT-cUTI was a randomised, double-blind, double-dummy, non-inferiority trial done in 209 centres in 25 countries. Between July, 2011, and September, 2013, hospital inpatients aged 18 years or older who had pyuria and a diagnosis of a complicated lower-urinary-tract infection or pyelonephritis were randomly assigned in a 1:1 ratio to receive intravenous 1·5 g ceftolozane-tazobactam every 8 h or intravenous high-dose (750 mg) levofloxacin once daily for 7 days. The randomisation schedule was computer generated in blocks of four and stratified by study site. The next allocation was obtained by the study site pharmacist via an interactive voice-response system. The primary endpoint was a composite of microbiological eradication and clinical cure 5–9 days after treatment in the microbiological modified intention-to-treat (MITT) population, with a non-inferiority margin of 10%. This study is registered with ClinicalTrials.gov, numbers NCT01345929 and NCT01345955. Of 1083 patients enrolled, 800 (73·9%), of whom 656 (82·0%) had pyelonephritis, were included in the microbiological MITT population. Ceftolozane-tazobactam was non-inferior to levofloxacin for composite cure (306 [76·9%] of 398 vs 275 [68·4%] of 402, 95% CI 2·3–14·6) and, as the lower bound of the two-sided 95% CI around the treatment difference was positive and greater than zero, superiority was indicated. Adverse event profiles were similar in the two treatment groups and were mainly non-serious. Treatment with ceftolozane-tazobactam led to better responses than high-dose levofloxacin in patients with complicated lower-urinary-tract infections or pyelonephritis. Cubist Pharmaceuticals.
Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis
Abstract Background ZTI-01 (fosfomycin for injection) is an epoxide antibiotic with a differentiated mechanism of action (MOA) inhibiting an early step in bacterial cell wall synthesis. ZTI-01 has broad in vitro spectrum of activity, including multidrug-resistant Gram-negative pathogens, and is being developed for treatment of complicated urinary tract infection (cUTI) and acute pyelonephritis (AP) in the United States. Methods Hospitalized adults with suspected or microbiologically confirmed cUTI/AP were randomized 1:1 to 6 g ZTI-01 q8h or 4.5 g intravenous (IV) piperacillin-tazobactam (PIP-TAZ) q8h for a fixed 7-day course (no oral switch); patients with concomitant bacteremia could receive up to 14 days. Results Of 465 randomized patients, 233 and 231 were treated with ZTI-01 and PIP-TAZ, respectively. In the microbiologic modified intent-to-treat (m-MITT) population, ZTI-01 met the primary objective of noninferiority compared with PIP-TAZ with overall success rates of 64.7% (119/184 patients) vs 54.5% (97/178 patients), respectively; treatment difference was 10.2% (95% confidence interval [CI]: −0.4, 20.8). Clinical cure rates at test of cure (TOC, day 19–21) were high and similar between treatments (90.8% [167/184] vs 91.6% [163/178], respectively). In post hoc analysis using unique pathogens typed by pulsed-field gel electrophoresis, overall success rates at TOC in m-MITT were 69.0% (127/184) for ZTI-01 versus 57.3% (102/178) for PIP-TAZ (difference 11.7% 95% CI: 1.3, 22.1). ZTI-01 was well tolerated. Most treatment-emergent adverse events, including hypokalemia and elevated serum aminotransferases, were mild and transient. Conclusions ZTI-01 was effective for treatment of cUTI including AP and offers a new IV therapeutic option with a differentiated MOA for patients with serious Gram-negative infections. Clinical Trial Registration NCT02753946 ZEUS, a Phase 2/3 trial, studied ZTI-01 (fosfomycin for injection) in the treatment of hospitalized adults with complicated urinary tract infection and acute pyelonephritis versus piperacillin-tazobactam. ZTI-01 was non-inferior to piperacillin-tazobactam and was well tolerated.
Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program
Background. The global emergence of carbapenem-resistant Enterobacteriaceae highlights the urgent need to reduce carbapenem dependence. The phase 3 RECAPTURE program compared the efficacy and safety of ceftazidime-avibactam and doripenem in patients with complicated urinary tract infection (cUTI), including acute pyelonephritis. Methods. Hospitalized adults with suspected or microbiologically confirmed cUTI/acute pyelonephritis were randomized 1:1 to ceftazidime-avibactam 2000 mg/500 mg every 8 hours or doripenem 500 mg every 8 hours (doses adjusted for renal function), with possible oral antibiotic switch after ≥5 days (total treatment duration up to 10 days or 14 days for patients with bacteremia). Results. Of 1033 randomized patients, 393 and 417 treated with ceftazidime-avibactam and doripenem, respectively, were eligible for the primary efficacy analyses; 19.6% had ceftazidime-nonsusceptible baseline pathogens. Noninferiority of ceftazidimeavibactam vs doripenem was demonstrated for the US Food and Drug Administration co-primary endpoints of (1) patient-reported symptomatic resolution at day 5: 276 of 393 (70.2%) vs 276 of 417 (66.2%) patients (difference, 4.0% [95% confidence interval {CI}, −2.39% to 10.42%]); and (2) combined symptomatic resolution/microbiological eradication at test of cure (TOC): 280 of 393 (71.2%) vs 269 of 417 (64.5%) patients (difference, 6.7% [95% CI, .30% to 13.12%]). Microbiological eradication at TOC (European Medicines Agency primary endpoint) occurred in 304 of 393 (77.4%) ceftazidime-avibactam vs 296 of 417 (71.0%) doripenem patients (difference, 6.4% [95% CI, .33% to 12.36%]), demonstrating superiority at the 5% significance level. Both treatments showed similar efficacy against ceftazidime-nonsusceptible pathogens. Ceftazidime-avibactam had a safety profile consistent with that of ceftazidime alone. Conclusions. Ceftazidime-avibactam was highly effective for the empiric treatment of cUTI (including acute pyelonephritis), and may offer an alternative to carbapenems in this setting. Clinical Trials Registration. NCT01595438; NCT01599806.