Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
295 result(s) for "Urologic Neoplasms - genetics"
Sort by:
Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial
Antibodies targeting PD-1 or its ligand 1 PD-L1 such as atezolizumab, have great efficacy in a proportion of metastatic urothelial cancers1,2. Biomarkers may facilitate identification of these responding tumors3. Neoadjuvant use of these agents is associated with pathological complete response in a spectrum of tumors, including urothelial cancer4–7. Sequential tissue sampling from these studies allowed for detailed on-treatment biomarker analysis. Here, we present a single-arm phase 2 study, investigating two cycles of atezolizumab before cystectomy in 95 patients with muscle-invasive urothelial cancer (ClinicalTrials.gov identifier: NCT02662309). Pathological complete response was the primary endpoint. Secondary endpoints focused on safety, relapse-free survival and biomarker analysis. The pathological complete response rate was 31% (95% confidence interval: 21–41%), achieving the primary efficacy endpoint. Baseline biomarkers showed that the presence of preexisting activated T cells was more prominent than expected and correlated with outcome. Other established biomarkers, such as tumor mutational burden, did not predict outcome, differentiating this from the metastatic setting. Dynamic changes to gene expression signatures and protein biomarkers occurred with therapy, whereas changes in DNA alterations with treatment were uncommon. Responding tumors showed predominant expression of genes related to tissue repair after treatment, making tumor biomarker interpretation challenging in this group. Stromal factors such as transforming growth factor-β and fibroblast activation protein were linked to resistance, as was high expression of cell cycle gene signatures after treatment.A single-arm multicenter phase 2 trial demonstrates clinical efficacy of neoadjuvant PD-L1 blockade in patients with resectable muscle-invasive bladder cancer ineligible for cisplatin and examines biomarkers associated with patient outcome.
TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells
In humans, TGFβ signalling is associated with lack of response to immunotherapy in immune-excluded tumours; in mouse models of this immune phenotype, robust tumour infiltration by T cells and tumour regression are observed only when checkpoint inhibition is combined with inhibition of TGFβ signalling. Predictors of response to immunotherapy Immune checkpoint blockade is showing clinical promise in the treatment of several cancer types, but the determinants of response need to be better established. Sanjeev Mariathasan and colleagues show that specific immune cell phenotypes and a high neoantigen burden are predictors of good responses to therapy with atezolizumab, an anti-PD-L1 agent, in patients with metastatic urothelial carcinoma. Lack of response to therapy is associated with increased TGFβ signalling in fibroblasts in the tumour microenvironment. Combining TGFβ blockade with immune checkpoint blockade in mouse models increases the anti-tumour efficacy of the therapy, suggesting that identifying and targeting microenvironmental regulators of anti-tumour immunity may increase the reach of immunotherapy approaches. Therapeutic antibodies that block the programmed death-1 (PD-1)–programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer 1 , 2 , 3 , 4 , 5 . However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here we examined tumours from a large cohort of patients with metastatic urothelial cancer who were treated with an anti-PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response to treatment was associated with CD8 + T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden. Lack of response was associated with a signature of transforming growth factor β (TGFβ) signalling in fibroblasts. This occurred particularly in patients with tumours, which showed exclusion of CD8 + T cells from the tumour parenchyma that were instead found in the fibroblast- and collagen-rich peritumoural stroma; a common phenotype among patients with metastatic urothelial cancer. Using a mouse model that recapitulates this immune-excluded phenotype, we found that therapeutic co-administration of TGFβ-blocking and anti-PD-L1 antibodies reduced TGFβ signalling in stromal cells, facilitated T-cell penetration into the centre of tumours, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding patient outcome in this setting and suggests that TGFβ shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T-cell infiltration.
Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma
Erdafitinib, an inhibitor of fibroblast growth factor receptor, was tested in previously treated patients with advanced urothelial cancer with FGFR alterations. The objective response rate was 40%, with treatment-related adverse events of grade 3 or higher reported in nearly half the patients.
Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV‑201): a multicentre, single-arm, phase 2 trial
Locally advanced or metastatic urothelial carcinoma is generally incurable and has scarce treatment options, especially for cisplatin-ineligible patients previously treated with PD-1 or PD-L1 therapy. Enfortumab vedotin is an antibody–drug conjugate directed at Nectin-4, a protein highly expressed in urothelial carcinoma. We aimed to evaluate the efficacy and safety of enfortumab vedotin in the post-immunotherapy setting in cisplatin-ineligible patients. EV-201 is a multicentre, single-arm, phase 2 study of enfortumab vedotin in patients with locally advanced or metastatic urothelial carcinoma previously treated with PD-1 or PD-L1 inhibitors. Cohort 2 included adults (aged ≥18 years) with an Eastern Cooperative Oncology Group performance status score of 2 or less who were considered ineligible for cisplatin at enrolment and who had not received platinum-containing chemotherapy in the locally advanced or metastatic setting. Enfortumab vedotin was given intravenously at a dose of 1·25 mg/kg on days 1, 8, and 15 of every 28-day cycle. The primary endpoint was confirmed objective response rate per Response Evaluation Criteria in Solid Tumours version 1.1 assessed by blinded independent central review. Efficacy and safety were analysed in all patients who received at least one dose of enfortumab vedotin. EV-201 is an ongoing study and the primary analysis is complete. This study is registered with Clinicaltrials.gov, NCT03219333. Between Oct 8, 2017, and Feb 11, 2020, 91 patients were enrolled at 40 sites globally, of whom 89 received treatment. Median follow-up was 13·4 months (IQR 11·3–18·9). At data cutoff (Sept 8, 2020), the confirmed objective response rate was 52% (46 of 89 patients; 95% CI 41–62), with 18 (20%) of 89 patients achieving a complete response and 28 (31%) achieving a partial response. 49 (55%) of 89 patients had grade 3 or worse treatment-related adverse events. The most common grade 3 or 4 treatment-related adverse events were neutropenia (eight [9%] patients), maculopapular rash (seven [8%] patients), and fatigue (six [7%] patients). Treatment-related serious adverse events occurred in 15 (17%) patients. Three (3%) patients died due to acute kidney injury, metabolic acidosis, and multiple organ dysfunction syndrome (one [1%] each) within 30 days of first dose and these deaths were considered by the investigator to be related to treatment; a fourth death from pneumonitis occurred more than 30 days after the last dose and was also considered to be related to treatment. Treatment with enfortumab vedotin was tolerable and confirmed responses were seen in 52% of cisplatin-ineligible patients with locally advanced or metastatic urothelial carcinoma who were previously treated with PD-1 or PD-L1 inhibitors. These patients have few treatment options, and enfortumab vedotin could be a promising new therapy for a patient population with a high unmet need. Astellas Pharma Global Development and Seagen.
Urinary MicroRNAs as Biomarkers of Urological Cancers: A Systematic Review
MicroRNAs (miRNAs) are emerging as biomarkers for the detection and prognosis of cancers due to their inherent stability and resilience. To summarize the evidence regarding the role of urinary miRNAs (umiRNAs) in the detection, prognosis, and therapy of genitourinary cancers, we performed a systematic review of the most important scientific databases using the following keywords: (urinary miRNA) AND (prostate cancer); (urinary miRNA) AND (bladder cancer); (urinary miRNA) AND (renal cancer); (urinary miRNA) AND (testicular cancer); (urinary miRNA) AND (urothelial cancer). Of all, 1364 articles were screened. Only original studies in the English language on human specimens were considered for inclusion in our systematic review. Thus, a convenient sample of 60 original articles was identified. UmiRNAs are up- or downregulated in prostate cancer and may serve as potential non-invasive molecular biomarkers. Several umiRNAs have been identified as diagnostic biomarkers of urothelial carcinoma and bladder cancer (BC), allowing us to discriminate malignant from nonmalignant forms of hematuria. UmiRNAs could serve as therapeutic targets or recurrence markers of non-muscle-invasive BC and could predict the aggressivity and prognosis of muscle-invasive BC. In renal cell carcinoma, miRNAs have been identified as predictors of tumor detection, aggressiveness, and progression to metastasis. UmiRNAs could play an important role in the diagnosis, prognosis, and therapy of urological cancers.
Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial
Patients with metastatic urothelial carcinoma have few treatment options after failure of platinum-based chemotherapy. In this trial, we assessed treatment with atezolizumab, an engineered humanised immunoglobulin G1 monoclonal antibody that binds selectively to programmed death ligand 1 (PD-L1), in this patient population. For this multicentre, single-arm, two-cohort, phase 2 trial, patients (aged ≥18 years) with inoperable locally advanced or metastatic urothelial carcinoma whose disease had progressed after previous platinum-based chemotherapy were enrolled from 70 major academic medical centres and community oncology practices in Europe and North America. Key inclusion criteria for enrolment were Eastern Cooperative Oncology Group performance status of 0 or 1, measurable disease defined by Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST v1.1), adequate haematological and end-organ function, and no autoimmune disease or active infections. Formalin-fixed paraffin-embedded tumour specimens with sufficient viable tumour content were needed from all patients before enrolment. Patients received treatment with intravenous atezolizumab (1200 mg, given every 3 weeks). PD-L1 expression on tumour-infiltrating immune cells (ICs) was assessed prospectively by immunohistochemistry. The co-primary endpoints were the independent review facility-assessed objective response rate according to RECIST v1.1 and the investigator-assessed objective response rate according to immune-modified RECIST, analysed by intention to treat. A hierarchical testing procedure was used to assess whether the objective response rate was significantly higher than the historical control rate of 10% at an α level of 0·05. This study is registered with ClinicalTrials.gov, number NCT02108652. Between May 13, 2014, and Nov 19, 2014, 486 patients were screened and 315 patients were enrolled into the study. Of these patients, 310 received atezolizumab treatment (five enrolled patients later did not meet eligibility criteria and were not dosed with study drug). The PD-L1 expression status on infiltrating immune cells (ICs) in the tumour microenvironment was defined by the percentage of PD-L1-positive immune cells: IC0 (<1%), IC1 (≥1% but <5%), and IC2/3 (≥5%). The primary analysis (data cutoff May 5, 2015) showed that compared with a historical control overall response rate of 10%, treatment with atezolizumab resulted in a significantly improved RECIST v1.1 objective response rate for each prespecified immune cell group (IC2/3: 27% [95% CI 19–37], p<0·0001; IC1/2/3: 18% [13–24], p=0·0004) and in all patients (15% [11–20], p=0·0058). With longer follow-up (data cutoff Sept 14, 2015), by independent review, objective response rates were 26% (95% CI 18–36) in the IC2/3 group, 18% (13–24) in the IC1/2/3 group, and 15% (11–19) overall in all 310 patients. With a median follow-up of 11·7 months (95% CI 11·4–12·2), ongoing responses were recorded in 38 (84%) of 45 responders. Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolizumab. Grade 3–4 treatment-related adverse events, of which fatigue was the most common (five patients [2%]), occurred in 50 (16%) of 310 treated patients. Grade 3–4 immune-mediated adverse events occurred in 15 (5%) of 310 treated patients, with pneumonitis, increased aspartate aminotransferase, increased alanine aminotransferase, rash, and dyspnoea being the most common. No treatment-related deaths occurred during the study. Atezolizumab showed durable activity and good tolerability in this patient population. Increased levels of PD-L1 expression on immune cells were associated with increased response. This report is the first to show the association of TCGA subtypes with response to immune checkpoint inhibition and to show the importance of mutation load as a biomarker of response to this class of agents in advanced urothelial carcinoma. F Hoffmann-La Roche Ltd.
Expression of Nectin-4 and PD-L1 in Upper Tract Urothelial Carcinoma
Enfortumab vedotin is a novel antibody–drug conjugate targeting Nectin-4, which is highly expressed in urothelial carcinoma. However, the expression status of Nectin-4 in upper tract urothelial carcinoma (UTUC) remains unclear. The relationship between Nectin-4 and Programmed Death Ligand 1 (PD-L1) in UTUC is also ambiguous. We performed immunohistochemical analysis of 99 UTUC tissue microarray to assess the expression of Nectin-4 and PD-L1 in UTUC. Nectin-4-positivity was detected in 65 (65.7%) samples, and PD-L1 was detected in 24 (24.2%) samples. There was no correlation between the expression of Nectin-4 and PD-L1. Patients with strong Nectin-4-expressing tumors had a significantly higher risk of progression (p = 0.031) and cancer-specific mortality (p = 0.036). Strong Nectin-4 expression was also an independent predictor of disease progression in the high-risk group (pT3 ≤ or presence of lymphovascular invasion or lymph node metastasis) (Hazard ratio, 3.32 [95% confidence interval, 1.20–7.98; p = 0.027]). In conclusion, we demonstrated that Nectin-4 expression rate in UTUC was 65.7% and independent of PD-L1 expression. Strong Nectin-4 expression was associated with worse progression-free survival in high-risk UTUC. These findings suggested that enfortumab vedotin may be effective in a broad range of patients with UTUC, regardless of PD-L1 expression.
The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution
Advanced urothelial cancer is a frequently lethal disease characterized by marked genetic heterogeneity 1 . In this study, we investigated the evolution of genomic signatures caused by endogenous and external mutagenic processes and their interplay with complex structural variants (SVs). We superimposed mutational signatures and phylogenetic analyses of matched serial tumours from patients with urothelial cancer to define the evolutionary dynamics of these processes. We show that APOBEC3-induced mutations are clonal and early, whereas chemotherapy induces mutational bursts of hundreds of late subclonal mutations. Using a genome graph computational tool 2 , we observed frequent high copy-number circular amplicons characteristic of extrachromosomal DNA (ecDNA)-forming SVs. We characterized the distinct temporal patterns of APOBEC3-induced and chemotherapy-induced mutations within ecDNA-forming SVs, gaining new insights into the timing of these mutagenic processes relative to ecDNA biogenesis. We discovered that most CCND1 amplifications in urothelial cancer arise within circular ecDNA-forming SVs. ecDNA-forming SVs persisted and increased in complexity, incorporating additional DNA segments and contributing to the evolution of treatment resistance. Oxford Nanopore Technologies long-read whole-genome sequencing followed by de novo assembly mapped out CCND1 ecDNA structure. Experimental modelling of CCND1 ecDNA confirmed its role as a driver of treatment resistance. Our findings define fundamental mechanisms that drive urothelial cancer evolution and have important therapeutic implications. Whole-genome sequencing of matched serial tumours from patients identifies two key mutagenic factors (APOBEC3 and chemotherapy) and extrachromosomal DNA-forming structural variants that drive treatment resistance in urothelial cancer.
An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer
Durvalumab is a programmed death-ligand 1 (PD-L1) inhibitor with clinical activity in advanced urothelial cancer (AUC) 1 . AUC is characterized by several recurrent targetable genomic alterations 2 – 5 . This study ( NCT02546661 , BISCAY) combined durvalumab with relevant targeted therapies in biomarker-selected chemotherapy-refractory AUC populations including: (1) fibroblast growth factor receptor (FGFR) inhibitors in tumors with FGFR DNA alterations (FGFRm); (2) pharmacological inhibitor of the enzyme poly-ADP ribose polymerase (PARP) in tumors with and without DNA homologous recombination repair deficiency (HRRm); and (3) TORC1/2 inhibitors in tumors with DNA alteration to the mTOR/PI3K pathway 3 – 5 .This trial adopted a new, biomarker-driven, multiarm adaptive design. Safety, efficacy and relevant biomarkers were evaluated. Overall, 391 patients were screened of whom 135 were allocated to one of six study arms. Response rates (RRs) ranged 9–36% across the study arms, which did not meet efficacy criteria for further development. Overall survival (OS) and progression-free survival (PFS) were similar in the combination arms and durvalumab monotherapy arm. Biomarker analysis showed a correlation between circulating plasma-based DNA (ctDNA) and tissue for FGFRm. Sequential circulating tumor DNA analysis showed that changes to FGFRm correlated with clinical outcome. Our data support the clinical activity of FGFR inhibition and durvalumab monotherapy but do not show increased activity for any of the combinations. These findings question the targeted/immune therapy approach in AUC. The adaptive, biomarker-driven BISCAY trial evaluating durvalumab with targeted agents in patients with metastatic urothelial carcinoma based on tumor genomic alterations finds no added clinical benefit over durvalumab monotherapy.
Development and deployment of a histopathology-based deep learning algorithm for patient prescreening in a clinical trial
Accurate identification of genetic alterations in tumors, such as Fibroblast Growth Factor Receptor, is crucial for treating with targeted therapies; however, molecular testing can delay patient care due to the time and tissue required. Successful development, validation, and deployment of an AI-based, biomarker-detection algorithm could reduce screening cost and accelerate patient recruitment. Here, we develop a deep-learning algorithm using >3000 H&E-stained whole slide images from patients with advanced urothelial cancers, optimized for high sensitivity to avoid ruling out trial-eligible patients. The algorithm is validated on a dataset of 350 patients, achieving an area under the curve of 0.75, specificity of 31.8% at 88.7% sensitivity, and projected 28.7% reduction in molecular testing. We successfully deploy the system in a non-interventional study comprising 89 global study clinical sites and demonstrate its potential to prioritize/deprioritize molecular testing resources and provide substantial cost savings in the drug development and clinical settings. Here, the authors develop a deep-learning algorithm to predict biomarkers from histopathological imaging in advanced urothelial cancer patients. This method detects suitable patients for targeted therapy clinical trials with a significant reduction in molecular testing, providing cost and time savings in real-world clinical settings.