Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
126
result(s) for
"VHH single-domain antibody"
Sort by:
Isolation of PCSK9-specific nanobodies from synthetic libraries using a combined protein selection strategy
by
Chantarasorn, Yodpong
,
Longsompurana, Phoomintara
,
Tapaneeyakorn, Satita
in
631/154
,
631/1647/1511
,
631/1647/2163
2025
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries. This combined process enabled isolation of three unique Nb clones (NbT15, NbT21, and NbT22) that all bound specifically to a target antigen, namely proprotein convertase subtilisin/kexin type 9 (PCSK9) as well as a gain-of-function PCSK9 mutant (D374Y). All three clones bound to PCSK9 and blocked the interaction between the low-density lipoprotein receptor (LDLR) and either wild-type PCSK9 or the D374Y mutant. Overall, our combined protein selection method enables rapid and straightforward identification of potent antigen-specific Nbs in a manner that can be executed in a basic laboratory setting without the need for specialized equipment. We anticipate that our strategy will be a valuable addition to the protein engineering toolkit, allowing development of Nbs or virtually any other synthetic binding protein for a wide range of applications.
Journal Article
Redirecting a Broad-Spectrum Nanobody Against the Receptor-Binding Domain of SARS-CoV-2 to Target Omicron Variants
by
Choowongkomon, Kiattawee
,
Longsompurana, Phoomintara
,
Boonsilp, Siriphan
in
Amino acids
,
Antibodies
,
antibody selection
2024
The urgent need for an effective COVID-19 therapy has propelled the exploration of innovative strategies to combat the fast-mutating SARS-CoV-2 virus. This study attempted to develop nanobodies (Nbs) against the SARS-CoV-2 Omicron variants by redirecting the 1.29 neutralizing Nb, a receptor-binding domain (RBD)-specific Nb that can protect against various SARS-CoV-2 variants other than Omicron, to target SARS-CoV-2 Omicron subvariant BA.5, the variant used for the development of the bivalent vaccine. Error-prone libraries of the 1.29 Nb were constructed. Following two rounds of selection using the functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) technique, we rapidly identified two Nbs, namely, C11 and K9, that could target the RBD of the Omicron subvariant BA.5, XBB.1.5, and XBB.1.16 subvariants. Molecular docking provided insights into how these Nbs interact with the RBD of the BA.5 and JN.1 variants. The application of directed evolution via utilization of error-prone PCR and the synthetic E. coli applied in the FLI-TRAP selection method may be a powerful tool for facilitating simple, fast and economical selection to redirect existing antibodies and to generate antibody fragments to target proteins susceptible to autonomous mutation, not only for viral infection but also other diseases, such as cancer.
Journal Article
Neutralizing and Enhancing Epitopes of the SARS-CoV-2 Receptor-Binding Domain (RBD) Identified by Nanobodies
by
Mahasongkram, Kodchakorn
,
Choowongkomon, Kiattawee
,
Chaicumpa, Wanpen
in
Animals
,
Antibodies
,
Antibodies, Neutralizing
2023
Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79–98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus’s infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350–354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first time, we report SARS-CoV-2 RBD-enhancing epitopes, i.e., a linear VH103 epitope at RBD residues 359NCVADVSVLYNSAPFFTFKCYG380, and the VH105 epitope, most likely conformational and formed by residues in three RBD regions that are spatially juxtaposed upon the protein folding. Data obtained in this way are useful for the rational design of subunit SARS-CoV-2 vaccines that should be devoid of enhancing epitopes. VH114 and VH278 should be tested further for clinical use against COVID-19.
Journal Article
Nanobody-based cancer therapy of solid tumors
by
van Bergen en Henegouwen, Paul MP
,
Kijanka, Marta
,
Oliveira, Sabrina
in
Analysis
,
Antibodies, Monoclonal - immunology
,
Antibodies, Monoclonal - therapeutic use
2015
The development of tumor-targeted therapies using monoclonal antibodies has been successful during the last 30 years. Nevertheless, the efficacy of antibody-based therapy is still limited and further improvements are eagerly awaited. One of the promising novel developments that may overcome the drawbacks of monoclonal antibody-based therapies is the employment of nanobodies. Current nanobody-based therapeutics can be divided into three different platforms with nanobodies functioning as: receptor antagonists; targeting moieties of effector domains; or targeting molecules on the surface of nanoparticles. In this article, we describe factors that affect their performance at three different stages: their systemic circulation upon intravenous injection; their extravasation and tumor penetration; and, finally, their interaction with target molecules.
Journal Article
Camelid single-domain antibodies: promises and challenges as lifesaving treatments
2022
Since the discovery of camelid heavy-chain antibodies in 1993, there has been tremendous excitement for these antibody domains (VHHs/sdAbs/nanobodies) as research tools, diagnostics, and therapeutics. Commercially, several patents were granted to pioneering research groups in Belgium and the Netherlands between 1996–2001. Ablynx was established in 2001 with the aim of exploring the therapeutic applications and development of nanobody drugs. Extensive efforts over two decades at Ablynx led to the first approved nanobody drug, caplacizumab (Cablivi) by the EMA and FDA (2018–2019) for the treatment of rare blood clotting disorders in adults with acquired thrombotic thrombocytopenic purpura (TPP). The relatively long development time between camelid sdAb discovery and their entry into the market reflects the novelty of the approach, together with intellectual property restrictions and freedom-to-operate issues. The approval of the first sdAb drug, together with the expiration of key patents, may open a new horizon for the emergence of camelid sdAbs as mainstream biotherapeutics in the years to come. It remains to be seen if nanobody-based drugs will be cheaper than traditional antibodies. In this review, I provide critical perspectives on camelid sdAbs and present the promises and challenges to their widespread adoption as diagnostic and therapeutic agents.
Journal Article
Comparative analysis of CDR3 length-dependent patterns in VHHs
2025
VHHs, or nanobodies, are distinguished by their compact size, high stability, and unique ability to selectively target specific epitopes. The CDR3 region in VHHs, which plays a crucial role in antigen binding, exhibits significant diversity and varies among species.
This study systematically examined CDR3 length dependent patterns by analyzing NGS sequences from the PBMCs of Alpacas, Llamas and Bactrians, in conjunction with VHH structure data from the public database.
VHHs from Alpacas and Llamas exhibited similar CDR3 length distributions, while Bactrian VHHs displayed significantly longer but narrower length distribution. Key sequence, structural, and VHH/antigen interaction characteristics correlated with CDR3 length were identified. Specifically, longer CDR3s were associated with a lower net charge, reduced surface hydrophobicity, and enhanced interactions with other VHH regions. Structural analyses revealed that longer CDR3s tended to adopt bent conformations with increased helical and coil structures, whereas shorter CDR3s favored extended conformations and β-sheets. Associations between CDR3 length and amino acid usage patterns within VHH sequences were also observed, including preferences at various sites and in antigen interactions. Notably, species-specific differences were apparent, with Alpaca and Llama VHHs showing more pronounced CDR3 length-dependent patterns than those from Bactrians.
These findings highlight the significant impact of CDR3 length on VHH sequence, structure, and antigen interaction characteristics, providing valuable insights for VHH engineering, synthetic library design, and the development of therapeutic nanobodies optimized for targeting diverse epitopes.
Journal Article
Camelid single-domain antibodies: historical perspective and future outlook
2017
Tremendous effort has been expended over the past two and a half decades to understand many aspects of camelid heavy chain antibodies, from their biology, evolution, and immunogenetics to their potential applications in various fields of research and medicine. In this article, I present a historical perspective on the development of camelid single-domain antibodies (sdAbs or VHHs, also widely known as nanobodies) since their discovery and discuss the advantages and disadvantages of these unique molecules in various areas of research, industry, and medicine. Commercialization of camelid sdAbs exploded in 2001 with a flurry of patents issued to the Vrije Universiteit Brussel (VUB) and later taken on by the Vlaams Interuniversitair Instituut voor Biotechnologie (VIB) and, after 2002, the VIB-founded spin-off company, Ablynx. While entrepreneurial spirit has certainly catalyzed the exploration of nanobodies as marketable products, IP restrictions may be partially responsible for the relatively long time span between the discovery of these biomolecules and their entry into the pharmaceutical market. It is now anticipated that the first VHH-based antibody drug, Caplacizumab, a bivalent anti-vWF antibody for treating rare blood clotting disorders, may be approved and commercialized in 2018 or shortly thereafter. This elusive first approval, along with the expiry of key patents, may substantially alter the scientific and biomedical landscape surrounding camelid sdAbs and pave the way for their emergence as mainstream biotherapeutics.
Journal Article
Single-Domain Antibodies Efficiently Neutralize SARS-CoV-2 Variants of Concern
by
Esmagambetov, Ilias B.
,
Zubkova, Olga V.
,
Favorskaya, Irina A.
in
Adjuvants
,
Antibodies
,
Antibodies, Neutralizing - metabolism
2022
Virus-neutralizing antibodies are one of the few treatment options for COVID-19. The evolution of SARS-CoV-2 virus has led to the emergence of virus variants with reduced sensitivity to some antibody-based therapies. The development of potent antibodies with a broad spectrum of neutralizing activity is urgently needed. Here we isolated a panel of single-domain antibodies that specifically bind to the receptor-binding domain of SARS-CoV-2 S glycoprotein. Three of the selected antibodies exhibiting most robust neutralization potency were used to generate dimeric molecules. We observed that these modifications resulted in up to a 200-fold increase in neutralizing activity. The most potent heterodimeric molecule efficiently neutralized each of SARS-CoV-2 variant of concern, including Alpha, Beta, Gamma, Delta and Omicron variants. This heterodimeric molecule could be a promising drug candidate for a treatment for COVID-19 caused by virus variants of concern.
Journal Article
Dromedary camel nanobodies broadly neutralize SARS-CoV-2 variants
2022
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.
Journal Article
Nanobodies: a promising approach to treatment of viral diseases
by
Barraviera, Benedito
,
Prudencio, Carlos Roberto
,
Ferreira, Rui Seabra
in
Amino acids
,
Antibodies
,
Antibodies - metabolism
2024
Since their discovery in the 1990s, heavy chain antibodies have garnered significant interest in the scientific community. These antibodies, found in camelids such as llamas and alpacas, exhibit distinct characteristics from conventional antibodies due to the absence of a light chain in their structure. Furthermore, they possess a single antigen-binding domain known as VHH or Nanobody (Nb). With a small size of approximately 15 kDa, these Nbs demonstrate improved characteristics compared to conventional antibodies, including greater physicochemical stability and enhanced biodistribution, enabling them to bind inaccessible epitopes more effectively. As a result, Nbs have found numerous applications in various medical and veterinary fields, particularly in diagnostics and therapeutics. Advances in biotechnology have made the production of recombinant antibodies feasible and compatible with large-scale manufacturing. Through the construction of immune phage libraries that display VHHs and subsequent selection through biopanning, it has become possible to isolate specific Nbs targeting pharmaceutical targets of interest, such as viruses. This review describes the processes involved in nanobody production, from hyperimmunization to purification, with the aim of their application in the pharmaceutical industry.
Journal Article