Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
403 result(s) for "Vaccines, Attenuated - biosynthesis"
Sort by:
Preparation and Efficacy of a Live Newcastle Disease Virus Vaccine Encapsulated in Chitosan Nanoparticles
Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine. A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9. NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.
Rational design of a live-attenuated eastern equine encephalitis virus vaccine through informed mutation of virulence determinants
Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses.
The future of cell culture-based influenza vaccine production
Influenza vaccines have been prepared in embryonated chicken eggs and used for more than 60 years. Although this older technology is adequate to produce hundreds of millions of doses per year, most viral vaccines are now being produced in cell culture platforms. The question of whether egg-based influenza vaccines will continue to serve the needs of the growing influenza vaccine market is considered here. In 2006, the US government committed to support the development of cell-based influenza vaccines by funding advanced development and expansion of domestic manufacturing infrastructure. Funding has also been provided for other recombinant DNA approaches that do not depend on growth of influenza viruses. As the influenza vaccine industry expands over the next 5-10 years, it will be interesting to follow which of these various technologies are able to best meet the needs of a growing influenza vaccine market.
Confronting the barriers to develop novel vaccines against brucellosis
Brucellosis is an important zoonotic disease of nearly worldwide distribution. This pathogen causes abortion in domestic animals and undulant fever, arthritis, endocarditis and meningitis in humans. Currently, there is no vaccine licensed for brucellosis in humans. Furthermore, control of brucellosis in the human population relies on the control of animal disease. Available animal vaccines may cause disease and in some cases have limited efficacy. This article discusses recent studies in the development of recombinant protein, DNA and live-attenuated vaccines against brucellosis. Furthermore, we call the attention of the scientific community, government and industry professionals to the fact that for these novel vaccine initiatives to become licensed products they need to be effective in natural hosts and bypass the regulatory barriers present in several countries.
Vaccination with transgenic Eimeria tenella expressing Eimeria maxima AMA1 and IMP1 confers partial protection against high-level E. maxima challenge in a broiler model of coccidiosis
Background Poultry coccidiosis is a parasitic enteric disease with a highly negative impact on chicken production. In-feed chemoprophylaxis remains the primary method of control, but the increasing ineffectiveness of anticoccidial drugs, and potential future restrictions on their use has encouraged the use of commercial live vaccines. Availability of such formulations is constrained by their production, which relies on the use of live chickens. Several experimental approaches have been taken to explore ways to reduce the complexity and cost of current anticoccidial vaccines including the use of live vectors expressing relevant Eimeria proteins. We and others have shown that vaccination with transgenic Eimeria tenella parasites expressing Eimeria maxima Apical Membrane Antigen-1 or Immune Mapped Protein-1 ( Em AMA1 and Em IMP1) partially reduces parasite replication after challenge with a low dose of E. maxima oocysts. In the present study, we have reassessed the efficacy of these experimental vaccines using commercial birds reared at high stocking densities and challenged with both low and high doses of E. maxima to evaluate how well they protect chickens against the negative impacts of disease on production parameters. Methods Populations of E. tenella parasites expressing Em AMA1 and Em IMP1 were obtained by nucleofection and propagated in chickens. Cobb500 broilers were immunised with increasing doses of transgenic oocysts and challenged two weeks later with E. maxima to quantify the effect of vaccination on parasite replication, local IFN-γ and IL-10 responses (300 oocysts), as well as impacts on intestinal lesions and body weight gain (10,000 oocysts). Results Vaccination of chickens with E. tenella expressing Em AMA1, or admixtures of E. tenella expressing Em AMA1 or Em IMP1, was safe and induced partial protection against challenge as measured by E. maxima replication and severity of pathology. Higher levels of protection were observed when both antigens were delivered and was associated with a partial modification of local immune responses against E. maxima , which we hypothesise resulted in more rapid immune recognition of the challenge parasites. Conclusions This study offers prospects for future development of multivalent anticoccidial vaccines for commercial chickens. Efforts should now be focused on the discovery of additional antigens for incorporation into such vaccines.
Cost of production of live attenuated dengue vaccines: A case study of the Instituto Butantan, Sao Paulo, Brazil
► Dengue is a serious disease and progress is being achieved in vaccine development. ► A vaccine's price affects its uptake and is influenced by the cost of production. ► We estimate production cost of a tetravalent live attenuated dengue vaccine. ► At 60 million doses produced annually, cost would be ∼$0.20 in 10-dose vials and ∼$0.70 in single-dose vials. ► The vaccine can be made available at a price that most ministries of health could afford. A vaccine to prevent dengue disease is urgently needed. Fortunately, a few tetravalent candidate vaccines are in the later stages of development and show promise. But, if the cost of these candidates is too high, their beneficial potential will not be realized. The price of a vaccine is one of the most important factors affecting its ultimate application in developing countries. In recent years, new vaccines such as those for human papilloma virus and pneumococcal disease (conjugate vaccine) have been introduced with prices in developed countries exceeding $50 per dose. These prices are above the level affordable by developing countries. In contrast, other vaccines such as those against Japanese encephalitis (SA14-14-2 strain vaccine) and meningitis type A have prices in developing countries below one dollar per dose, and it is expected that their introduction and use will proceed more rapidly. Because dengue disease is caused by four related viruses, vaccines must be able to protect against all four. Although there are several live attenuated dengue vaccine candidates under clinical evaluation, there remains uncertainty about the cost of production of these tetravalent vaccines, and this uncertainty is an impediment to rapid progress in planning for the introduction and distribution of dengue vaccines once they are licensed. We have undertaken a detailed economic analysis, using standard industrial methodologies and applying generally accepted accounting practices, of the cost of production of a live attenuated vaccine, originally developed at the US National Institutes of Health (National Institute of Allergy and Infectious Diseases), to be produced at the Instituto Butantan in Sao Paulo, Brazil. We determined direct costs of materials, direct costs of personnel and labor, indirect costs, and depreciation. These were analyzed assuming a steady-state production of 60 million doses per year. Although this study does not seek to compute the price of the final licensed vaccine, the cost of production estimate produced here leads to the conclusion that the vaccine can be made available at a price that most ministries of health in developing countries could afford. This conclusion provides strong encouragement for supporting the development of the vaccine so that, if it proves to be safe and effective, licensure can be achieved soon and the burden of dengue disease can be reduced.
Use of MDCK cells for production of live attenuated influenza vaccine
To develop a cell-based live attenuated influenza vaccine (LAIV) manufacturing process, several different cell lines were evaluated by comparing the titer of viruses after infection with LAIV strains. While several cell lines have been reported to support influenza virus replication, the degree of replication and the ability to support replication of LAIV strains have not been systematically examined. MDCK cells, which have been considered as potential substrates for influenza vaccine production were evaluated in addition to Vero, MRC-5, WI-38 and FRhL cells. MRC-5, WI-38 and FRhL cells produced low to moderate titers of virus with titers equal or below 5.0 log 10 TCID 50/mL. Both Vero and MDCK cells could support a higher level of virus replication for certain strains, however, Vero cells only produced high titers when grown in the presence of serum. MDCK cells supported high levels of vaccine virus production for multiple different LAIV subtypes in both serum containing and serum-free media. These results suggest that MDCK cell-based production can be used as an alternative production platform to the currently used egg-based LAIV production system.
NS-based live attenuated H1N1 pandemic vaccines protect mice and ferrets
Although vaccines against influenza A virus are the most effective method to combat infection, it is clear that their production needs to be accelerated and their efficacy improved. We generated live attenuated human influenza A vaccines (LAIVs) by rationally engineering mutations directly into the genome of a pandemic-H1N1 virus. Two LAIVs (NS1-73 and NS1-126) were based on the success of LAIVs for animal influenza A viruses. A third candidate (NSΔ5) is a unique NS-mutant that has never been used as a LAIV. The vaccine potential of each LAIV was determined through analysis of attenuation, interferon production, immunogenicity, and their ability to protect mice and ferrets. This study demonstrates that NSΔ5 is an ideal LAIV candidate, provides important information on the effects that different NS mutations have on the pandemic-H1N1 virus and shows that LAIVs can be engineered directly from the genomes of emerging/circulating influenza A viruses.
Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: In vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells
Currently MedImmune manufactures cold-adapted ( ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006–2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.
Influenza vaccines: recent advances in production technologies
In spite of ongoing annual vaccination programs, the seasonal influenza epidemics remain a major cause of high morbidity and mortality. The currently used “inactivated” vaccines provide very short-term and highly specific humoral immunity due to the frequent antigenic variations in the influenza virion. These intra-muscularly administered vaccines also fail to induce protective mucosal immunity at the portal of viral entry and destruction of the virally infected cells by induction of cytotoxic T lymphocytes. Therefore, it is necessary to develop immunologically superior vaccines. This article highlights some of the recent developments in investigational influenza vaccines. The most notable recent developments of interest include the use of immunopotentiators, development of DNA vaccines, use of reverse genetics, and the feasibility of mammalian cell-based production processes. Presently, due to their safety and efficacy, the cold-adapted “live attenuated” vaccines are seen as viable alternatives to the “inactivated vaccines”. The DNA vaccines are gaining importance due to the induction of broad-spectrum immunity. In addition, recent advances in recombinant technologies have shown the possibility of constructing pre-made libraries of vaccine strains, so that adequately preparations can be made for epidemics and pandemics.