Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
70,028 result(s) for "Vascular endothelial growth factor"
Sort by:
Structural determinants of growth factor binding and specificity by VEGF receptor 2
Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel formation through activation of three receptor tyrosine kinases, VEGFR-1, -2, and -3. The extracellular domain of VEGF receptors consists of seven immunoglobulin homology domains, which, upon ligand binding, promote receptor dimerization. Dimerization initiates transmembrane signaling, which activates the intracellular tyrosine kinase domain of the receptor. VEGF-C stimulates lymphangiogenesis and contributes to pathological angiogenesis via VEGFR-3. However, proteolytically processed VEGF-C also stimulates VEGFR-2, the predominant transducer of signals required for physiological and pathological angiogenesis. Here we present the crystal structure of VEGF-C bound to the VEGFR-2 high-affinity-binding site, which consists of immunoglobulin homology domains D2 and D3. This structure reveals a symmetrical 2:2 complex, in which left-handed twisted receptor domains wrap around the 2-fold axis of VEGF-C. In the VEGFs, receptor specificity is determined by an N-terminal alpha helix and three peptide loops. Our structure shows that two of these loops in VEGF-C bind to VEGFR-2 subdomains D2 and D3, while one interacts primarily with D3. Additionally, the N-terminal helix of VEGF-C interacts with D2, and the groove separating the two VEGF-C monomers binds to the D2/D3 linker. VEGF-C, unlike VEGF-A, does not bind VEGFR-1. We therefore created VEGFR-1/VEGFR-2 chimeric proteins to further study receptor specificity. This biochemical analysis, together with our structural data, defined VEGFR-2 residues critical for the binding of VEGF-A and VEGF-C. Our results provide significant insights into the structural features that determine the high affinity and specificity of VEGF/VEGFR interactions.
Circulating Angiogenic Factors as Biomarkers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis
Angiogenesis and lymphangiogenesis are classical features of granuloma formation in pulmonary tuberculosis (PTB). In addition, the angiogenic factor--VEGF-A is a known biomarker for PTB. To examine the association of circulating angiogenic factors with PTB, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2 and VEGF-R3in individuals with PTB, latent TB (LTB) or no TB infection (NTB). Circulating levels of VEGF-A, VEGF-C andVEGF-R2 were significantly higher in PTB compared to LTB or NTB individuals. Moreover, the levels of VEGF-A, VEGF-C and VEGF-R2 were significantly higher in PTB with bilateral and/or cavitary disease. The levels of these factors also exhibited a significant positive relationship with bacterial burdens in PTB. ROC analysis revealed VEGF-A and VEGF-R2 as markers distinguishing PTB from LTB or NTB. Finally, the circulating levels of all the angiogenic factors examined were significantly reduced following successful chemotherapy. Therefore, our data demonstrate that PTB is associated with elevated levels of circulating angiogenic factors, possibly reflecting vascular and endothelial dysfunction. In addition, some of these circulating angiogenic factors could prove useful as biomarkers to monitor disease severity, bacterial burden and therapeutic responses.
Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab
Pharmacological inhibition of VEGF-A has proven to be effective in inhibiting angiogenesis and vascular leak associated with cancers and various eye diseases. However, little information is currently available on the binding kinetics and relative biological activity of various VEGF inhibitors. Therefore, we have evaluated the binding kinetics of two anti-VEGF antibodies, ranibizumab and bevacizumab, and VEGF Trap (also known as aflibercept), a novel type of soluble decoy receptor, with substantially higher affinity than conventional soluble VEGF receptors. VEGF Trap bound to all isoforms of human VEGF-A tested with subpicomolar affinity. Ranibizumab and bevacizumab also bound human VEGF-A, but with markedly lower affinity. The association rate for VEGF Trap binding to VEGF-A was orders of magnitude faster than that measured for bevacizumab and ranibizumab. Similarly, in cell-based bioassays, VEGF Trap inhibited the activation of VEGFR1 and VEGFR2, as well as VEGF-A induced calcium mobilization and migration in human endothelial cells more potently than ranibizumab or bevacizumab. Only VEGF Trap bound human PlGF and VEGF-B, and inhibited VEGFR1 activation and HUVEC migration induced by PlGF. These data differentiate VEGF Trap from ranibizumab and bevacizumab in terms of its markedly higher affinity for VEGF-A, as well as its ability to bind VEGF-B and PlGF.
Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema
A trial of three drugs — bevacizumab, ranibizumab, and aflibercept — for the treatment of diabetic macular edema showed that each drug improved visual acuity, but aflibercept outperformed the other two drugs for eyes with a baseline visual acuity of 20/50 or worse. Diabetic macular edema, a manifestation of diabetic retinopathy that impairs central vision, affects approximately 750,000 people in the United States and is a leading cause of vision loss. 1 The costs associated with visual disability and treatment of diabetic macular edema are high. 2 The increasing prevalence of diabetes worldwide highlights the importance of diabetic macular edema as a global health issue. 3 Vascular endothelial growth factor (VEGF) is an important mediator of abnormal vascular permeability in diabetic macular edema. 4 , 5 Intravitreous injections of anti-VEGF agents have been shown to be superior to laser photocoagulation of the macula, the standard treatment for diabetic . . .
VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling
Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3 , but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2 +/− ; Vegfr3 +/− compound heterozygosity recapitulated homozygous loss of Vegfr3 . These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts. Notch and VEGF signalling controls the specification of endothelial cells to tip and stalk cells during angiogenesis sprouting. Alitalo and colleagues show that macrophage-derived VEGF-C activates VEGFR2 to contribute to the conversion of endothelial cells from a tip- to a stalk-cell fate when two sprouts fuse to ensure vessel growth and branching.
Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial
VEGF and VEGF receptor 2 (VEGFR-2)-mediated signalling and angiogenesis can contribute to the pathogenesis and progression of gastric cancer. We aimed to assess whether the addition of ramucirumab, a VEGFR-2 antagonist monoclonal antibody, to first-line chemotherapy improves outcomes in patients with metastatic gastric or gastro-oesophageal junction adenocarcinoma. For this double-blind, randomised, placebo-controlled, phase 3 trial done at 126 centres in 20 countries, we recruited patients aged 18 years or older with metastatic, HER2-negative gastric or gastro-oesophageal junction adenocarcinoma, an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and adequate organ function. Eligible patients were randomly assigned (1:1) with an interactive web response system to receive cisplatin (80 mg/m2, on the first day) plus capecitabine (1000 mg/m2, twice daily for 14 days), every 21 days, and either ramucirumab (8 mg/kg) or placebo on days 1 and 8, every 21 days. 5-Fluorouracil (800 mg/m2 intravenous infusion on days 1–5) was permitted in patients unable to take capecitabine. The primary endpoint was investigator-assessed progression-free survival, analysed by intention to treat in the first 508 patients. We did a sensitivity analysis of the primary endpoint, including a central review of CT scans. Overall survival was a key secondary endpoint. This study is registered with ClinicalTrials.gov, number NCT02314117. Between Jan 28, 2015, and Sept 16, 2016, 645 patients were randomly assigned to receive ramucirumab plus fluoropyrimidine and cisplatin (n=326) or placebo plus fluoropyrimidine and cisplatin (n=319). Investigator-assessed progression-free survival was significantly longer in the ramucirumab group than the placebo group (hazard ratio [HR] 0·753, 95% CI 0·607–0·935, p=0·0106; median progression-free survival 5·7 months [5·5–6·5] vs 5·4 months [4·5–5·7]). A sensitivity analysis based on central independent review of the radiological images did not corroborate the investigator-assessed difference in progression-free survival (HR 0·961, 95% CI 0·768–1·203, p=0·74). There was no difference in overall survival between groups (0·962, 0·801–1·156, p=0·6757; median overall survival 11·2 months [9·9–11·9] in the ramucirumab group vs 10·7 months [9·5–11·9] in the placebo group). The most common grade 3–4 adverse events were neutropenia (85 [26%] of 323 patients in the ramucirumab group vs 85 [27%] of 315 in the placebo group), anaemia (39 [12%] vs 44 [14%]), and hypertension (32 [10%] vs 5 [2%]). The incidence of any-grade serious adverse events was 160 (50%) of 323 patients in the ramucirumab group and 149 (47%) of 315 patients in the placebo group. The most common serious adverse events were vomiting (14 [4%] in the ramucirumab group vs 21 [7%] in the placebo group) and diarrhoea (11 [3%] vs 19 [6%]). There were seven deaths in each group, either during study treatment or within 30 days of discontinuing study treatment, which were the result of treatment-related adverse events. In the ramucirumab group, these adverse events were acute kidney injury, cardiac arrest, gastric haemorrhage, peritonitis, pneumothorax, septic shock, and sudden death (n=1 of each). In the placebo group, these adverse events were cerebrovascular accident (n=1), multiple organ dysfunction syndrome (n=2), pulmonary embolism (n=2), sepsis (n=1), and small intestine perforation (n=1). Although the primary analysis for progression-free survival was statistically significant, this outcome was not confirmed in a sensitivity analysis of progression-free survival by central independent review, and did not improve overall survival. Therefore, the addition of ramucirumab to cisplatin plus fluoropyrimidine chemotherapy is not recommended as first-line treatment for this patient population. Eli Lilly and Company.
Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials
Faricimab is a bispecific antibody that acts through dual inhibition of both angiopoietin-2 and vascular endothelial growth factor A. We report primary results of two phase 3 trials evaluating intravitreal faricimab with extension up to every 16 weeks for neovascular age-related macular degeneration (nAMD). TENAYA and LUCERNE were randomised, double-masked, non-inferiority trials across 271 sites worldwide. Treatment-naive patients with nAMD aged 50 years or older were randomly assigned (1:1) to intravitreal faricimab 6·0 mg up to every 16 weeks, based on protocol-defined disease activity assessments at weeks 20 and 24, or aflibercept 2·0 mg every 8 weeks. Randomisation was performed through an interactive voice or web-based response system using a stratified permuted block randomisation method. Patients, investigators, those assessing outcomes, and the funder were masked to group assignments. The primary endpoint was mean change in best-corrected visual acuity (BCVA) from baseline averaged over weeks 40, 44, and 48 (prespecified non-inferiority margin of four letters), in the intention-to-treat population. Safety analyses included patients who received at least one dose of study treatment. These trials are registered with ClinicalTrials.gov (TENAYA NCT03823287 and LUCERNE NCT03823300). Across the two trials, 1329 patients were randomly assigned between Feb 19 and Nov 19, 2019 (TENAYA n=334 faricimab and n=337 aflibercept), and between March 11 and Nov 1, 2019 (LUCERNE n=331 faricimab and n=327 aflibercept). BCVA change from baseline with faricimab was non-inferior to aflibercept in both TENAYA (adjusted mean change 5·8 letters [95% CI 4·6 to 7·1] and 5·1 letters [3·9 to 6·4]; treatment difference 0·7 letters [−1·1 to 2·5]) and LUCERNE (6·6 letters [5·3 to 7·8] and 6·6 letters [5·3 to 7·8]; treatment difference 0·0 letters [–1·7 to 1·8]). Rates of ocular adverse events were comparable between faricimab and aflibercept (TENAYA n=121 [36·3%] vs n=128 [38·1%], and LUCERNE n=133 [40·2%] vs n=118 [36·2%]). Visual benefits with faricimab given at up to 16-week intervals demonstrates its potential to meaningfully extend the time between treatments with sustained efficacy, thereby reducing treatment burden in patients with nAMD. F Hoffmann-La Roche.
Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials
To reduce treatment burden and optimise patient outcomes in diabetic macular oedema, we present 1-year results from two phase 3 trials of faricimab, a novel angiopoietin-2 and vascular endothelial growth factor-A bispecific antibody. YOSEMITE and RHINE were randomised, double-masked, non-inferiority trials across 353 sites worldwide. Adults with vision loss due to centre-involving diabetic macular oedema were randomly assigned (1:1:1) to intravitreal faricimab 6·0 mg every 8 weeks, faricimab 6·0 mg per personalised treatment interval (PTI), or aflibercept 2·0 mg every 8 weeks up to week 100. PTI dosing intervals were extended, maintained, or reduced (every 4 weeks up to every 16 weeks) based on disease activity at active dosing visits. The primary endpoint was mean change in best-corrected visual acuity at 1 year, averaged over weeks 48, 52, and 56. Efficacy analyses included the intention-to-treat population (non-inferiority margin 4 Early Treatment Diabetic Retinopathy Study [ETDRS] letters); safety analyses included patients with at least one dose of study treatment. These trials are registered with ClinicalTrials.gov (YOSEMITE NCT03622580 and RHINE NCT03622593). 3247 patients were screened for eligibility in YOSEMITE (n=1532) and RHINE (n=1715). After exclusions, 940 patients were enrolled into YOSEMITE between Sept 5, 2018, and Sept 19, 2019, and 951 patients were enrolled into RHINE between Oct 9, 2018, and Sept 20, 2019. These 1891 patients were randomly assigned to faricimab every 8 weeks (YOSEMITE n=315, RHINE n=317), faricimab PTI (n=313, n=319), or aflibercept every 8 weeks (n=312, n=315). Non-inferiority for the primary endpoint was achieved with faricimab every 8 weeks (adjusted mean vs aflibercept every 8 weeks in YOSEMITE 10·7 ETDRS letters [97·52% CI 9·4 to 12·0] vs 10·9 ETDRS letters [9·6 to 12·2], difference −0·2 ETDRS letters [−2·0 to 1·6]; RHINE 11·8 ETDRS letters [10·6 to 13·0] vs 10·3 ETDRS letters [9·1 to 11·4] letters, difference 1·5 ETDRS letters [−0·1 to 3·2]) and faricimab PTI (YOSEMITE 11·6 ETDRS letters [10·3 to 12·9], difference 0·7 ETDRS letters [−1·1 to 2·5]; RHINE 10·8 ETDRS letters [9·6 to 11·9], difference 0·5 ETDRS letters [−1·1 to 2·1]). Incidence of ocular adverse events was comparable between faricimab every 8 weeks (YOSEMITE n=98 [31%], RHINE n=137 [43%]), faricimab PTI (n=106 [34%], n=119 [37%]), and aflibercept every 8 weeks (n=102 [33%], n=113 [36%]). Robust vision gains and anatomical improvements with faricimab were achieved with adjustable dosing up to every 16 weeks, demonstrating the potential for faricimab to extend the durability of treatment for patients with diabetic macular oedema. F Hoffmann-La Roche.
Aflibercept: A Review in Metastatic Colorectal Cancer
Aflibercept is a recombinant fusion protein that acts as a soluble decoy receptor for vascular endothelial growth factor (VEGF), a key regulator of angiogenesis. It binds to all isoforms of VEGF-A as well as VEGF-B and placental growth factor, and, thus, prevents them from binding to and activating their cognate receptors. In the USA and EU, intravenously administered aflibercept in combination with an infusion of leucovorin, fluorouracil and irinotecan (FOLFIRI) is approved for the treatment of patients with metastatic colorectal cancer that is resistant to or has progressed after treatment with an oxaliplatin-containing regimen. The efficacy of aflibercept in this indication was assessed in a multinational, pivotal phase 3 trial (VELOUR), in which the approved regimen of aflibercept 4 mg/kg every 2 weeks plus FOLFIRI significantly prolonged median overall survival by 1.44 months compared with FOLFIRI alone (primary endpoint). The addition of aflibercept also significantly prolonged progression-free survival and significantly increased the objective response rate compared with FOLFIRI alone. Addition of aflibercept to FOLFIRI was associated with anti-VEGF-related adverse events and an increased incidence of FOLFIRI-related adverse events, but the tolerability of the combination was generally acceptable in this pre-treated population. The most common grade 3 or 4 adverse events with aflibercept plus FOLFIRI included neutropenia, diarrhoea and hypertension. In conclusion, aflibercept plus FOLFIRI is a useful treatment option for patients with metastatic colorectal cancer previously treated with an oxaliplatin-containing regimen, with or without bevacizumab.
VEGFR2 alteration in Alzheimer’s disease
Alzheimer’s disease (AD) is a common disorder of progressive cognitive decline among elderly subjects. Angiogenesis-related factors including vascular endothelial growth factor (VEGF) might be involved in the pathogenesis of AD. Soluble form of the VEGF receptor is likely to be an intrinsic negative counterpart of VEGF. We measured the plasma levels of VEGF and its two soluble receptors (sVEGFR1 and sVEGFR2) in 120 control subjects, 75 patients with mild cognitive impairment, and 76 patients with AD using ELISA. Plasma levels of VEGF in patients with AD were higher than those in healthy control subjects. However, plasma levels of sVEGFR1 and sVEGFR2 were lower in patients with AD than in healthy control subjects. Levels of VEGFR2 mRNA were significantly decreased in human umbilical vein endothelial cells after amyloid-beta treatment. Further, protein levels of VEGFR2 were also decreased in the brains of AD model mice. In addition, we show that the expression of sVEGFR2 and VEGFR2 was also decreased by the transfection with the Notch intracellular domain. These results indicate that the alterations of VEGF and its two receptors levels might be associated with those at risk for Alzheimer’s disease.