Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
13
result(s) for
"Vascular space occupancy"
Sort by:
Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex
2023
Functional magnetic resonance imaging (fMRI) using a blood‐oxygenation‐level‐dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient‐echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth‐dependent (also called laminar or layer‐specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular‐Space‐Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth‐dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the “cortical vascular model” previously developed to predict layer‐specific BOLD signal changes in human primary visual cortex to also predict a layer‐specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus‐evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth‐dependent VASO profiles, whereas depth‐dependent BOLD profiles showed a bias towards signal contributions from intracortical veins. In this study, we have measured the depth‐dependent blood‐oxygenation‐level‐dependent and VAscular‐Space‐Occupancy profiles in the human primary visual cortex and then simulated these responses using a simple cortical vascular model to obtain an estimate of CBV change in different vascular compartments upon neural activity.
Journal Article
Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T
by
Kennerley, Aneurin J.
,
Möller, Harald E.
,
Ivanov, Dimo
in
7 Tesla MRI
,
Brain research
,
Cerebral blood volume
2014
Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in ‘arterial’ and ‘venous’ blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between ‘arterial’ and ‘venous’ contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.
•We developed an MRI-method to estimate arterial/venous CBV and BOLD signal changes.•Hemodynamics of excitation and inhibition was investigated in human brain at 7T.•We found different timecourses, layer-dependence and arterio-venous interaction.•Our results suggest different neurovascular coupling for excitation and inhibition.
Journal Article
Cortical lamina-dependent blood volume changes in human brain at 7T
by
Kennerley, Aneurin J.
,
Gauthier, Claudine J.
,
Möller, Harald E.
in
7 Tesla MRI
,
Acquisitions & mergers
,
Brain research
2015
Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans.
[Display omitted]
•A CBV-sensitive fMRI method is developed for high-resolution fMRI in humans.•Lamina-dependent CBV fMRI responses are shown in humans.•VASO cortical profiles are validated with Fe-contrast agent fMRI in animals.•Sensitivity to large veins can be minimized using VASO-CBV instead of BOLD fMRI.•Ipsilateral fMRI responses to finger tapping are positive in M1 and negative in S1.
Journal Article
Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications
2018
Quantitative cerebral blood volume (CBV) fMRI has the potential to overcome several specific limitations of BOLD fMRI. It provides direct physiological interpretability and promises superior localization specificity in applications of sub-millimeter resolution fMRI applications at ultra-high magnetic fields (7T and higher). Non-invasive CBV fMRI using VASO (vascular space occupancy), however, is inherently limited with respect to its data acquisition efficiency, restricting its imaging coverage and achievable spatial and temporal resolution. This limitation may be reduced with recent advanced acceleration and reconstruction strategies that allow two-dimensional acceleration, such as in simultaneous multi-slice (SMS) 2D-EPI or 3D-EPI in combination with CAIPIRINHA field-of-view shifting. In this study, we sought to determine the functional sensitivity and specificity of these readout strategies with VASO over a broad range of spatial resolutions; spanning from low spatial resolution (3mm) whole-cortex to sub-millimeter (0.75mm) slab-of-cortex (for cortical layer-dependent applications). In the thermal-noise-dominated regime of sub-millimeter resolutions, 3D-EPI-VASO provides higher temporal stability and sensitivity to detect changes in CBV compared to 2D-EPI-VASO. In this regime, 3D-EPI-VASO unveils task activation located in the cortical laminae with little contamination from surface veins, in contrast to the cortical surface weighting of GE-BOLD fMRI. In the physiological-noise-dominated regime of lower resolutions, however, 2D-SMS-VASO shows superior performance compared to 3D-EPI-VASO. Due to its superior sensitivity at a layer-dependent level, 3D-EPI VASO promises to play an important role in future neuroscientific applications of layer-dependent fMRI.
•Limitations of sub-millimeter fMRI are discussed.•CBV-sensitive fMRI is combined with 2D and 3D-sEPI imaging.•At ultra-high resolutions, novel contrast and acquisition schemes are needed.•At high-res: 1.) CBV fMRI outperforms GE-BOLD 2.) 3D-EPI outperforms 2D-EPI.•CBV fMRI based on 3D-EPI allow layer-dependent fMRI applications.
Journal Article
Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges
2018
Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood-inflow contaminations.
In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.
[Display omitted]
•CBV-sensitive VASO was implemented at 9.4 T for layer-dependent fMRI in humans.•9.4 T VASO is challenging due to: blood-inflow, SAR, T2*-decay, B1+and B0 constraints.•Alternating pTx shimming and advanced adiabatic pulses can overcome these challenges.•Layer-dependent CBV changes can be reliably detected in human motor cortex at 9.4 T.
Journal Article
Integrated VASO and perfusion contrast: A new tool for laminar functional MRI
2020
Earlier research in cats has shown that both cerebral blood volume (CBV) and cerebral blood flow (CBF) can be used to identify layer-dependent fMRI activation with spatial specificity superior to gradient-echo blood-oxygen-level-dependent (BOLD) contrast (Jin and Kim, 2008a). CBF contrast of perfusion fMRI at ultra-high field has not been widely applied in humans to measure laminar activity due to its low sensitivity, while CBV contrast for fMRI using vascular space occupancy (VASO) has been successfully used. However, VASO can be compromised by interference of blood in-flow effects and a temporally limited acquisition window around the blood-nulling time point. Here, we proposed to use DANTE (Delay Alternating with Nutation for Tailored Excitation) pulse trains combined with 3D-EPI to acquire an integrated VASO and perfusion (VAPER) contrast. The signal origin of the VAPER contrast was theoretically evaluated with respect to its CBV and CBF contributions using a four-compartment simulation model. The feasibility of VAPER to measure layer-dependent activity was empirically investigated in human primary motor cortex at 7 T. We demonstrated this new tool, with its highly specified functional layer profile, robust reproducibility, and improved sensitivity, to allow investigation of layer-specific cortical functions.
Journal Article
Comparing BOLD and VASO-CBV population receptive field estimates in human visual cortex
2022
Vascular Space Occupancy (VASO) is an alternative fMRI approach based on changes in Cerebral Blood Volume (CBV). VASO-CBV fMRI can provide higher spatial specificity than the blood oxygenation level-dependent (BOLD) method because the CBV response is thought to be limited to smaller vessels. To investigate how this technique compares to BOLD fMRI for cognitive neuroscience applications, we compared population receptive field (pRF) mapping estimates between BOLD and VASO-CBV. We hypothesized that VASO-CBV would elicit distinct pRF properties compared to BOLD. Specifically, since pRF size estimates also depend on vascular sources, we hypothesized that reduced vascular blurring might yield narrower pRFs for VASO-CBV measurements. We used a VASO sequence with a double readout 3D EPI sequence at 7T to simultaneously measure VASO-CBV and BOLD responses in the visual cortex while participants viewed conventional pRF mapping stimuli. Both VASO-CBV and BOLD images show similar eccentricity and polar angle maps across all participants. Compared to BOLD-based measurements, VASO-CBV yielded lower tSNR and variance explained. The pRF size changed with eccentricity similarly for VASO-CBV and BOLD, and the pRF size estimates were similar for VASO-CBV and BOLD, even when we equate variance explained between VASO-CBV and BOLD. This result suggests that the vascular component of the pRF size is not dominating in either VASO-CBV or BOLD.
Journal Article
Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T
2021
Functional magnetic resonance imaging (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast takes advantage of the coupling between neuronal activity and the hemodynamics to allow a non-invasive localisation of the neuronal activity. In general, fMRI experiments assume a linear relationship between neuronal activation and the observed hemodynamics. However, the relationship between BOLD responses, neuronal activity, and behaviour are often nonlinear. In addition, the nonlinearity between BOLD responses and behaviour may be related to neuronal process rather than a neurovascular uncoupling. Further, part of the nonlinearity may be driven by vascular nonlinearity effects in particular from large vessel contributions. fMRI based on cerebral blood volume (CBV), promises a higher microvascular specificity, potentially without vascular nonlinearity effects and reduced contamination of the large draining vessels compared to BOLD. In this study, we aimed to investigate differences in BOLD and VASO-CBV signal changes during a hand movement task over a broad range of movement rates. We used a double readout 3D-EPI sequence at 7T to simultaneously measure VASO-CBV and BOLD responses in the sensorimotor cortex. The measured BOLD and VASO-CBV responses increased very similarly in a nonlinear fashion, plateauing for movement rates larger than 1 Hz. Our findings show a tight relationship between BOLD and VASO-CBV responses, indicating that the overall interplay of CBV and BOLD responses are similar for the assessed range of movement rates. These results suggest that the observed nonlinearity of neuronal origin is already present in VASO-CBV measurements, and consequently shows relatively unchanged BOLD responses.
Journal Article
Improved Selectivity in 7 T Digit Mapping Using VASO-CBV
by
de Oliveira, Ícaro A. F
,
van der Zwaag, Wietske
,
Siero, Jeroen C. W
in
Blood
,
Brain
,
Brain mapping
2023
Functional magnetic resonance imaging (fMRI) at Ultra-high field (UHF, ≥ 7 T) benefits from significant gains in the BOLD contrast-to-noise ratio (CNR) and temporal signal-to-noise ratio (tSNR) compared to conventional field strengths (3 T). Although these improvements enabled researchers to study the human brain to unprecedented spatial resolution, the blood pooling effect reduces the spatial specificity of the widely-used gradient-echo BOLD acquisitions. In this context, vascular space occupancy (VASO-CBV) imaging may be advantageous since it is proposed to have a higher spatial specificity than BOLD. We hypothesized that the assumed higher specificity of VASO-CBV imaging would translate to reduced overlap in fine-scale digit representation maps compared to BOLD-based digit maps. We used sub-millimeter resolution VASO fMRI at 7 T to map VASO-CBV and BOLD responses simultaneously in the motor and somatosensory cortices during individual finger movement tasks. We assessed the cortical overlap in different ways, first by calculating similarity coefficient metrics (DICE and Jaccard) and second by calculating selectivity measures. In addition, we demonstrate a consistent topographical organization of the targeted digit representations (thumb-index-little finger) in the motor areas. We show that the VASO-CBV responses yielded less overlap between the digit clusters than BOLD, and other selectivity measures were higher for VASO-CBV too. In summary, these results were consistent across metrics and participants, confirming the higher spatial specificity of VASO-CBV compared to BOLD.
Journal Article
A review of the development of Vascular-Space-Occupancy (VASO) fMRI
2012
Vascular-Space-Occupancy (VASO) fMRI is a non-invasive technique to detect brain activation based on changes in Cerebral Blood Volume (CBV), as opposed to conventional BOLD fMRI, which is based on changes in blood oxygenation. This technique takes advantage of the T1 difference between blood and surrounding tissue, and uses an inversion recovery pulse sequence to null blood signal while maintaining part of the tissue signal. The VASO signal intensity can thus be considered proportional to 1-CBV. When neural activation causes CBV to increase, the VASO signal will show a decrease, allowing the detection of activated regions in the brain. Activation-induced changes in VASO signal, ∆S/S, are in the order of −1%. Absolute quantification of ∆CBV requires additional assumptions on baseline CBV and water contents of the parenchyma and blood. The first VASO experiment was conducted approximately 10years ago. The original goal of nulling the blood signal was to isolate and measure extravascular BOLD effects, thus a long TE of 50ms was used in the inversion recovery experiment. Instead of a positive signal change, a slight decrease in signal was observed, which became more pronounced when TE was shortened to 10ms. These findings led to the hypothesis of a CBV signal mechanism and the development of VASO fMRI. Since its discovery, VASO has been validated by comparison with MION-CBV studies in animals and has been used in humans and animals to understand metabolic and hemodynamic changes during brain activation and physiologic challenges. With recent development of more sensitive VASO acquisitions, the availability of arterial-based VASO sequences, and improvement in spatial coverage, this technique is finding its place in neuroscience and clinical studies.
Journal Article