Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,944 result(s) for "Vegetation effects"
Sort by:
Modeling the effects of vegetation growth rate on the dynamics of alternate bars
Alternate bars migrate downstream during floods due to coupled erosion and deposition on both sides of alluvial river channels. During low discharge periods, vegetation can grow on the tops of these bars, reducing migration rates and increasing bar wavelengths and bar heights. We explore two specific effects of above-ground vegetation on flow and transport. First, above-ground roots and groundcover can reduce bedload transport rates due to near-bed roughness, an effect not explored in most previous studies. Second, vegetation bodies (i.e. the above-ground trunk, stem, branches, and leaves) generate hydraulic drag. We model vegetation influences on alternate bar evolution using previously proposed equations which consider both vegetation body and above-ground root effects. We investigated three scenarios: vegetation body effects only, above-ground root effects only, and the full vegetation system (i.e., body and above-ground roots together). We find that vegetation body and root effects both reduce the bar migration rate and increase the bar wavelength. Reduced flow velocities over the bars due to vegetation body effects tend to enhance velocities and localized erosion on the opposite side of the channel, which in turn increases relative bar heights. Bar morphology and migration rate are most sensitive to vegetation growth rates at lower flood discharges where bar-top vegetation persists from year to year and older vegetation has stronger impacts on flow and transport. Higher peak floods tend to remove and reset vegetation growth, resulting in little sensitivity to growth rate.
Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO2 sink function
The rewetting of peatlands is regarded as an important nature-based climate solution and intended to reconcile climate protection with the restoration of self-regulating ecosystems that are resistant to climate impacts. Although the severity and frequency of droughts are predicted to increase as a consequence of climate change, it is not well understood whether such extreme events can jeopardize rewetting measures. The goal of this study was to better understand drought effects on vegetation development and the exchange of the two important greenhouse gases CO2 and CH4, especially in rewetted fens. Based on long-term reference records, we investigated anomalies in vegetation dynamics, CH4 emissions, and net CO2 exchange, including the component fluxes of ecosystem respiration (Reco) and gross ecosystem productivity (GEP), in a rewetted fen during the extreme European summer drought in 2018. Drought-induced vegetation dynamics were derived from remotely sensed data.Since flooding in 2010, the fen was characterized by a patchy mosaic of open-water surfaces and vegetated areas. After years of stagnant vegetation development, drought acted as a trigger event for pioneer species such as Tephroseris palustris and Ranunculus sceleratus to rapidly close persistent vegetation gaps. The massive spread of vegetation assimilated substantial amounts of CO2. In 2018, the annual GEP budget increased by 20 % in comparison to average years (2010–2017).Reco increased even by 40 %, but enhanced photosynthetic CO2 sequestration could compensate for half of the drought-induced increase in respiratory CO2 release. Altogether, the restored fen remained a net CO2 sink in the year of drought, though net CO2 sequestration was lower than in other years. CH4 emissions were 20 % below average on an annual basis, though stronger reduction effects occurred from August onwards, when daily fluxes were 60 % lower than in reference years.Our study reveals an important regulatory mechanism of restored fens to maintain their net CO2 sink function even in extremely dry years. It appears that, in times of more frequent climate extremes, fen restoration can create ecosystems resilient to drought. However, in order to comprehensively assess the mitigation prospects of peatland rewetting as a nature-based climate solution, further research needs to focus on the long-term effects of such extreme events beyond the actual drought period.
Estimation of Shallow Landslide Susceptibility Incorporating the Impacts of Vegetation on Slope Stability
This study aimed to develop a physical-based approach for predicting the spatial likelihood of shallow landslides at the regional scale in a transition zone with extreme topography. Shallow landslide susceptibility study in an area with diverse vegetation types as well as distinctive geographic factors (such as steep terrain, fractured rocks, and joints) that dominate the occurrence of shallow landslides is challenging. This article presents a novel methodology for comprehensively assessing shallow landslide susceptibility, taking into account both the positive and negative impacts of plants. This includes considering the positive effects of vegetation canopy interception and plant root reinforcement, as well as the negative effects of plant gravity loading and preferential flow of root systems. This approach was applied to simulate the regional-scale shallow landslide susceptibility in the Dadu River Basin, a transition zone with rapidly changing terrain, uplifting from the Sichuan Plain to the Qinghai–Tibet Plateau. The research findings suggest that: (1) The proposed methodology is effective and capable of assessing shallow landslide susceptibility in the study area; (2) the proposed model performs better than the traditional pseudo-static analysis method (TPSA) model, with 9.93% higher accuracy and 5.59% higher area under the curve; and (3) when the ratio of vegetation weight loads to unstable soil mass weight is high, an increase in vegetation biomass tends to be advantageous for slope stability. The study also mapped the spatial distribution of shallow landslide susceptibility in the study area, which can be used in disaster prevention, mitigation, and risk management.
Experimental investigation of the effect of vegetation on dam break flood waves
Dams have an important role in the industrial development of countries. Irrespective of the reason for dam break, the flood can cause devastating disasters with loss of life and property especially in densely populated areas. In this study, the effects of the vegetation on the flood wave propagation in case of dam break were investigated experimentally by using the distorted physical model of Ürkmez Dam. The horizontal and vertical scales of the distorted physical model are 1/150 and 1/30, respectively. The dam break scenarios were achieved by means of a gate of rectangular and triangular shape. The results obtained from experiments performed with vegetation were compared and interpreted with those obtained from experiments at which the vegetation configuration was absent. The analysis of the experimental data showed that the presence of vegetation causes a significant decrease in water depths as the flood wave propagates to the downstream and greatly reduces its impact on the settlements. It is also revealed that dam break shape plays an important role in temporal variation of flood wave.
Assessing the mechanical effects of vegetation on the stability of slopes with different geometries and soil types
This study evaluated the mechanical effects of vegetation, both root reinforcement and trees’ weight, on slope stability using the Morgenstern–Price method. Root reinforcement was equivalently expressed as root additional cohesion, which varied upon vegetation type and the depth of the root zone. The gravity of trees was simplified as a uniformly distributed load on the slope surface. Three types of variables, including vegetation type, slope geometry, and soil type, were considered. Parametric analysis shows that the response of the factor of safety (FoS) of slopes with different soil textures to the mechanical effects of vegetation significantly differs. The mature forest-covered sand slope with the smallest length and the lowest slope angle exhibits the largest increase in FoS of 34.3% relative to the plain soil slope. With the same configuration, the relative improvement in FoS of silt slopes is only 1/8 to 1/4 of that of sand slopes. The stability enhancement for clay slopes by vegetation is very limited (< 1.5%), and in certain situations, the stability even decreases. Moreover, we find that the Morgenstern–Price method can accurately estimate the additional destabilizing and stabilizing forces due to the mechanical effects, which allows its contribution to the improved FoS to be quantitatively divided into three components: additional cohesion from root system, trees’ surcharge, and variation in depth of slip surface. Generally, the findings of this paper deepen the understanding of the mechanical effects of vegetation on soil slope stability and provide a baseline for future eco-geotechnical engineering design.
Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity
Although low vegetation productivity has been observed in karst regions, whether and how bedrock geochemistry contributes to the low karstic vegetation productivity remain unclear. In this study, we address this knowledge gap by exploring the importance of bedrock geochemistry on vegetation productivity based on a critical zone investigation across a typical karst region in Southwest China. We show silicon and calcium concentrations in bedrock are strongly correlated with the regolith water loss rate (RWLR), while RWLR can predict vegetation productivity more effectively than previous models. Furthermore, the analysis based on 12 selected karst regions worldwide further suggest that lithological regulation has the potential to obscure and distort the influence of climate change. Our study implies that bedrock geochemistry could exert effects on vegetation growth in karst regions and highlights that the critical role of bedrock geochemistry for the karst region should not be ignored in the earth system model
Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China
Vegetation activity and phenology are significantly affected by climate change, and changes in vegetation activity and phenology can in turn affect regional or global climate patterns. As one of the world’s great biomes, temperate grasslands have undergone remarkable changes in recent decades, but the connections between vegetation activity and phenology changes and regional climate there have remained unclear. Using the observation minus reanalysis (OMR) method, this study investigated the possible effects of vegetation activity and vegetation growing season changes on air temperatures in temperate grasslands of China. The results showed that average NDVI of the temperate grassland significantly increased by 0.011 decade−1 for the growing season during 1982–2015. The growing season started earlier and ended later, resulting in an extension. Increased vegetation activity during spring and autumn significantly warmed spring and autumn air temperatures by reducing albedo. By contrast, summer greening had no significant effect on summer temperature, due to the opposing effects of decreased albedo and enhanced evapotranspiration on temperature. The earlier start and later end of the growing season contributed to warmer spring and autumn air temperatures. As phenological changes had no significant effect on summer temperature, the extended growing season warmed air temperature. Our results suggest that the climate change–induced increasing vegetation activity and extended growing seasons can further aggravate regional warming in temperate grasslands of China, implying that the effects of vegetation activity and phenology changes on regional climate should be considered in climate models for accurately simulating climate change in temperate grasslands.
No projected global drylands expansion under greenhouse warming
Drylands, comprising land regions characterized by water-limited, sparse vegetation, have commonly been projected to expand globally under climate warming. Such projections, however, rely on an atmospheric proxy for drylands, the aridity index, which has recently been shown to yield qualitatively incorrect projections of various components of the terrestrial water cycle. Here, we use an alternative index of drylands, based directly on relevant ecohydrological variables, and compare projections of both indices in Coupled Model Intercomparison Project Phase 5 climate models as well as Dynamic Global Vegetation Models. The aridity index overestimates simulated ecohydrological index changes. This divergence reflects different index sensitivities to hydroclimate change and opposite responses to the physiological effect on vegetation of increasing atmospheric CO2. Atmospheric aridity is thus not an accurate proxy of the future extent of drylands. Despite greater uncertainties than in atmospheric projections, climate model ecohydrological projections indicate no global drylands expansion under greenhouse warming, contrary to previous claims based on atmospheric aridity.Model projections of future drylands distribution using a proxy based on atmospheric aridity show expansion under climate change, but may not be an accurate representation. An alternative index based on ecohydrological variables such as water limitation shows no global expansion of drylands.
Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China
Understanding the impacts of drought and climate change on vegetation dynamics is of great significance in terms of formulating vegetation management strategies and predicting future vegetation growth. In this study, Pearson correlation analysis was used to investigate the correlations between drought, climatic factors and vegetation conditions, and linear regression analysis was adopted to investigate the time-lag and time-accumulation effects of climatic factors on vegetation coverage based on the standardized evapotranspiration deficit index (SEDI), normalized difference vegetation index (NDVI), and gridded meteorological dataset in the Yellow River Basin (YLRB) and Yangtze River Basin (YTRB), China. The results showed that (1) the SEDI in the YLRB showed no significant change over time and space during the growing season from 1982 to 2015, whereas it increased significantly in the YTRB (slope = 0.013/year, p < 0.01), and more than 40% of the area showed a significant trend of wetness. The NDVI of the two basins, YLRB and YTRB, increased significantly at rate of 0.011/decade and 0.016/decade, respectively (p < 0.01). (2) Drought had a significant impact on vegetation in 49% of the YLRB area, which was mainly located in the northern region. In the YTRB, the area significantly affected by drought accounted for 21% of the total area, which was mainly distributed in the Sichuan Basin. (3) In the YLRB, both temperature and precipitation generally had a one-month accumulated effect on vegetation conditions, while in the YTRB, temperature was the major factor leading to changes in vegetation. In most of the area of the YTRB, the effect of temperature on vegetation was also a one-month accumulated effect, but there was no time effect in the Sichuan Basin. Considering the time effects, the contribution of climatic factors to vegetation change in the YLRB and YTRB was 76.7% and 63.2%, respectively. The explanatory power of different vegetation types in the two basins both increased by 2% to 6%. The time-accumulation effect of climatic factors had a stronger explanatory power for vegetation growth than the time-lag effect.
The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China
Slope aspect plays a critical role in influencing vegetation pattern in semiarid area. The dry valleys of the Hengduan Mountains Region, southwestern China, are striking geographical landscape, suffering from severe ecological degradation. Here, we comprehensively investigated how slope aspect affects vegetation attributes in one of these valleys- the dry valley in the upper reaches of Min River. Three sites were selected along the valley and we quantitively examined the vegetation difference between slope aspects at the whole valley scale and each site level. We found significant vegetation differences between slope aspects in species composition, vegetative structure, and biodiversity pattern, which were in accordance with the observed significant difference in soil nutrient. Generally, north-facing slopes are associated with higher biomass, coverage and height, and species diversity than south-facing slopes. We also found between-aspect differences varied among the study sites, resulting in increased biomass, height, and β diversity differences, decreased density and coverage differences, and opposite trend observed in α diversity at relatively wet site. In conclusion, slope aspect had significant effect on vegetation attributes, which was significantly influenced by local climate (aridity) in terms of both strength and direction depending on the specific attributes investigated.