Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
764 result(s) for "Vegetation establishment"
Sort by:
Restoration of biogeomorphic systems by creating windows of opportunity to support natural establishment processes
In degraded landscapes, recolonization by pioneer vegetation is often halted by the presence of persistent environmental stress. When natural expansion does occur, it is commonly due to the momentary alleviation of a key environmental variable previously limiting new growth. Thus, studying the circumstances in which expansion occurs can inspire new restoration techniques, wherein vegetation establishment is provoked by emulating natural events through artificial means. Using the salt-marsh pioneer zone on tidal flats as a biogeomorphic model system, we explore how locally raised sediment bed forms, which are the result of natural (bio)geomorphic processes, enhance seedling establishment in an observational study. We then conduct a manipulative experiment designed to emulate these facilitative conditions in order to enable establishment on an uncolonized tidal flat. Here, we attempt to generate raised growth-promoting sediment bed forms using porous artificial structures. Flume experiments demonstrate how these structures produce a sheltered hydrodynamic environment in which suspended sediment and seeds preferentially settle. The application of these structures in the field led to the formation of stable, raised sediment platforms and the spontaneous recruitment of salt-marsh pioneers in the following growing season. These recruits were composed primarily of the annual pioneering Salicornia genus, with densities of up to 140 individuals/m² within the structures, a 60-fold increase over ambient densities. Lower abundances of five other perennial species were found within structures that did not appear elsewhere in the pioneer zone. Furthermore, recruits grew to be on average three times greater in mass inside of the structures than in the neighboring ambient environment. The success of this restoration design may be attributed to the combination of three factors: (1) enhanced seed retention, (2) suppressed mortality, and (3) accelerated growth rates on the elevated surfaces generated by the artificial structures. We argue that restoration approaches similar to the one shown here, wherein the conditions for natural establishment are actively mimicked to promote vegetation development, may serve as promising tools in many biogeomorphic ecosystems, ranging from coastal to arid ecosystems.
Salt marshes create more extensive channel networks than mangroves
Coastal wetlands fulfil important functions for biodiversity conservation and coastal protection, which are inextricably linked to typical morphological features like tidal channels. Channel network configurations in turn are shaped by bio-geomorphological feedbacks between vegetation, hydrodynamics and sediment transport. This study investigates the impact of two starkly different recruitment strategies between mangroves (fast/homogenous) and salt marshes (slow/patchy) on channel network properties. We first compare channel networks found in salt marshes and mangroves around the world and then demonstrate how observed channel patterns can be explained by vegetation establishment strategies using controlled experimental conditions. We find that salt marshes are dissected by more extensive channel networks and have shorter over-marsh flow paths than mangrove systems, while their branching patterns remain similar. This finding is supported by our laboratory experiments, which reveal that different recruitment strategies of mangroves and salt marshes hamper or facilitate channel development, respectively. Insights of our study are crucial to understand wetland resilience with rising sea-levels especially under climate-driven ecotone shifts. A comparison of salt marsh and mangrove channel networks around the world exhibited different network extents. This could be linked to differences in vegetation colonization strategies, with major implications on coastal development.
review of the characterization and revegetation of bauxite residues (Red mud)
Bauxite residue (Red mud) is produced in alumina plants by the Bayer process in which Al-containing minerals are dissolved in hot NaOH. The global residue inventory reached an estimated 3.5 billion tons in 2014, increasing by approximately 120 million tons per annum. The appropriate management of bauxite residue is becoming a global environmental concern following increased awareness of the need for environmental protection. Establishment of a vegetation cover is the most promising way forward for the management of bauxite residue, although its physical and chemical properties can limit plant growth due to high alkalinity and salinity, low hydraulic conductivity, trace element toxicity (Al and Fe), and deficiencies in organic matter and nutrition concentrations. This paper discusses the various revegetation and rehabilitation strategies. Studies of the rehabilitation of bauxite residues have mainly focused on two approaches, amelioration of the surface layer and screening of tolerant plants and soil microorganisms. Amendment with gypsum can reduce the high alkalinity and salinity, promote soil aggregation, and increase the hydraulic conductivity of bauxite residues. Organic matter can provide a source of plant nutrients, form stable complexes with metal cations, promote hydraulic conductivity, stabilize soil structure, and provide an energy source for soil organisms. Tolerant plants and microorganisms such as halophytes and alkaliphilic microbes show the greatest potential to ameliorate bauxite residues. However, during restoration or as a result of natural vegetation establishment, soil formation becomes a critical issue and an improved understanding of the various pedogenic processes are required, and future direction should focus on this area.
Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion
Disturbance such as wildfire may create opportunities for plant communities to reorganize in response to climate change. The interaction between climate change and disturbance may be particularly important in forests, where many of the foundational plant species (trees) are long-lived and where poor initial tree establishment can result in conversion to shrub-or graminoid-dominated systems. The response of post-disturbance vegetation establishment to post-disturbance weather conditions, particularly to extreme weather, could therefore provide useful information about how forest communities will respond to climate change. We examined the effect of post-fire weather conditions on post-fire tree, shrub, and graminoid recruitment in fire-adapted forests in northern California, USA, by surveying regenerating vegetation in severely burned areas 4–5 yr after 14 different wildfires that burned between 2004 and 2012. This time period (2004–2016) encompassed a wide range of post-fire weather conditions, including a period of extreme drought. For the most common tree species, we observed little evidence of disturbance-mediated community reorganization or range shifts but instead either (1) low sensitivity of recruitment to post-fire weather or (2) weak but widespread decreases in recruitment under unusually dry post-fire conditions, depending on the species. The occurrence of a single strong drought year following fire was more important than a series of moderately dry years in explaining tree recruitment declines. Overall, however, post-fire tree recruitment patterns were explained more strongly by long-term climate and topography and local adult tree species abundance than by post-fire weather conditions. This observation suggests that surviving adult trees can contribute to a “biological inertia” that restricts the extent to which tree community composition will track changes in climate through post-disturbance recruitment. In contrast to our observations in trees, we observed substantial increases in shrub and graminoid establishment under post-fire drought, suggesting that shifts in dominance between functional groups may become more likely in a future with more frequent and intense drought.
Vegetation establishment in soils polluted by heavy metal(loid)s after assisted natural remediation
Background and aims This field-base study evaluates the long-term effectiveness of in-situ remediation measures applied to soils residually polluted by potentially toxic elements (PTEs) in an area affected by a mining spill in SW Spain. Methods To evaluate the remediation treatments success, their influence on key soil properties and on the development of spontaneous vegetation in the treated soils was investigated. The treatments were based on human derived by-products valorization, and consisted of: biopiles, marble sludge and gypsum mining spoil addition, and their combination with an organic amendment (vermicompost). Results Amendments application improved the soil properties and reduced PTEs availability. As a result, an enhancement in spontaneous development of vegetation cover and diversity of plant species in the treated soils was followed. Spergularia rubra and Lamarckia aurea , two primary plant species growing in the studied area and that exhibit strong association to soils with the highest levels of pollution, showed high Pb and As accumulation in shoots ande in roots. Exceptionally, accumulation of these pollutants occurred in L. aurea roots, which can explain its high presence in soils with more limited vegetation development and in which no additional plant species can thrive. Conclusions The occurrence of S. rubra and L. aurea in the amended soils may be indicative of improved soil conditions and reduced toxicity induced by the remediation measures implemented. They may also be considered key species in the area since their presence can promote the recolonization of the degraded soils by species less tolerant to their residual pollution.
Early indicators of tidal ecosystem shifts in estuaries
Forecasting transitions between tidal ecosystem states, such as between bare tidal flats and vegetated marshes, is crucial because it may imply the irreversible loss of valuable ecosystem services. In this study, we combine geospatial analyses of three European estuaries with a simple numerical model to demonstrate that the development of micro-topographic patterning on tidal flats is an early indicator of marsh establishment. We first show that the development of micro-topographic patterns precedes vegetation establishment, and that patterns tend to form only on tidal flats with a slope of <0.3 degrees. Numerical modelling then provides an explanation for the formation of micro-topography due to the natural concentration of draining surface water over very gentle slopes. We find this early indicator to be robust across three estuaries where anthropogenic deepening and narrowing has occurred in recent decades, which may suggest its broader applicability to other estuaries with similar morphological management. Transitions from bare tidal flats to vegetated marshes are an example of shift between alternative stable ecosystem states. Here, the authors use remote sensing and modelling to quantify three stages in tidal flat evolution and identify early warning signals.
Conquering New Frontiers: The Effect of Vegetation Establishment and Environmental Interactions on the Expansion of Tidal Marsh Systems
Tidal marshes are dynamic systems whose lateral expansion depends on various biologically, physically, and geomorphologically controlled small- and large-scale feedback networks. Due to the bimodal existence of two landscape states at the tidal marsh edge (vegetated tidal marsh flat and bare tidal flat), and the high wave energy affecting the foremost seaward (pioneer) zone of tidal marshes, plant seedlings face two challenges: 1) successful seed settling and germination or clonal expansion and establishment under non-optimal conditions, and 2) a variety of abiotic stresses after establishment. Modelling and laboratory studies have addressed the reciprocal relationship especially between hydrodynamic and sedimentary forces and vegetation traits and have revealed fundamental mechanisms and feedbacks. Nevertheless, validations of the findings from artificial environments in natural ecosystems are still lacking. In this review, we present the current state of literature to vegetation-abiotic interactions, focusing on the establishment and adaptation of seedlings and propagules and what effect they may have on the prospective evolution of tidal marshes.
Disturbance and management effects on forest soil organic carbon stocks in the Pacific Northwest
Carbon (C)-informed forest management requires understanding how disturbance and management influence soil organic carbon (SOC) stocks at scales relevant to landowners and forest policy and management professionals. The continued growth of data sets and publications allows powerful synthesis approaches to be applied to such questions at increasingly fine scales. Here, we report results from a synthesis that used meta-analysis of published studies and two large observational databases to quantify disturbance and management impacts on SOC stocks. We conducted this, the third in a series of eco-regional SOC assessments, for the Pacific Northwest, which comprises ~8% of the land area but ~12% of the U.S. forest sector C sink. At the ecoregional level, our analysis indicated that fundamental patterns of vegetation, climate, and topography are far more important controls on SOC stocks than land use history, disturbance, or management. However, the same patterns suggested that increased warming, drying, wildland fire, and forest regeneration failure pose significant risks to SOC stocks across the region. Detailed meta-analysis results indicated that wildfires diminished SOC stocks throughout the soil profile, while prescribed fire only influenced surface organic materials and harvesting had no significant overall impact on SOC. Independent observational data corroborated the negative influence of fire on SOC derived from meta-analysis, suggested that harvest impacts may vary subregionally with climate or vegetation, and revealed that forests with agricultural uses (e.g., grazing) or legacies (e.g., cultivation) had smaller SOC stocks. We also quantified effects of a range of common forest management practices having either positive (organic amendments, nitrogen [N]-fixing vegetation establishment, inorganic N fertilization) or no overall effects on SOC (other inorganic fertilizers, urea fertilization, competition suppression through herbicides). In order to maximize the management applications of our results, we qualified them with ratings of confidence based on degree of support across approaches. Last, similar to earlier published assessments from other ecoregions, we supplemented our quantitative synthesis results with a literature review to arrive at a concise set of tactics for adapting management operations to site-specific criteria.
Rewetting increases vegetation cover and net growing season carbon uptake under fen conditions after peat-extraction in Manitoba, Canada
The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum -dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH 4 ) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH 4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH 4 emissions to maximize carbon sequestration potential.
Effects of Design and Operational Conditions on the Performance of Constructed Wetlands for Agricultural Pollution Control – Critical Review
Constructed wetlands (CWs) can be considered as an efficient nature-based solution for the treatment of agricultural drainage water (ADW) and consequently for the mitigation of non-point source pollution. Aiming to provide suggestions for the construction and implementation of CWs, this paper proposes and discusses key parameters of CW design and operation. In order to verify the effect of these features, different case studies were reviewed, focusing on the performance of CWs that are treating agricultural drainage water. The findings showed that design and operational factors (e.g., the application of simple hydraulic structures and vegetation establishment) can improve pollutant removal efficiencies by increasing hydraulic retention time. Hydraulic efficiency of CWs can also be enhanced through certain shape characteristics (e.g., adoption of a high aspect ratio and creation of a long and narrow CW shape). The careful consideration of these parameters before and during CW implementation can therefore help these systems to achieve their full potential. However, further study is recommended to assess the effects of some parameters (e.g., flow direction and the application of deep zones).