Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
20
result(s) for
"Venous deprivation"
Sort by:
Comprehensive Review of Future Liver Remnant (FLR) Assessment and Hypertrophy Techniques Before Major Hepatectomy: How to Assess and Manage the FLR
by
Marichez, Arthur
,
Chiche, Laurence
,
Laurent, Christophe
in
Aspartate aminotransferase
,
Bilirubin
,
Embolization
2024
Background
The regenerative capacities of the liver and improvements in surgical techniques have expanded the possibilities of resectability. Liver resection is often the only curative treatment for primary and secondary malignancies, despite the risk of post-hepatectomy liver failure (PHLF). This serious complication (with a 50% mortality rate) can be avoided by better assessment of liver volume and function of the future liver remnant (FLR).
Objective
The aim of this review was to understand and assess clinical, biological, and imaging predictors of PHLF risk, as well as the various hypertrophy techniques, to achieve an adequate FLR before hepatectomy.
Method
We reviewed the state of the art in liver regeneration and FLR hypertrophy techniques.
Results
The use of new biological scores (such as the aspartate aminotransferase/platelet ratio index + albumin–bilirubin [APRI+ALBI] score), concurrent utilization of
99m
Tc-mebrofenin scintigraphy (HBS), or dynamic hepatocyte contrast-enhanced MRI (DHCE-MRI) for liver volumetry helps predict the risk of PHLF. Besides portal vein embolization, there are other FLR optimization techniques that have their indications in case of risk of failure (e.g., associating liver partition and portal vein ligation for staged hepatectomy, liver venous deprivation) or in specific situations (transarterial radioembolization).
Conclusion
There is a need to standardize volumetry and function measurement techniques, as well as FLR hypertrophy techniques, to limit the risk of PHLF.
Journal Article
Liver Venous Deprivation Versus Portal Vein Embolization Before Major Hepatectomy for Colorectal Liver Metastases: A Retrospective Comparison of Short- and Medium-Term Outcomes
by
Quenet, Francois
,
Khayat, Salah
,
Cassese, Gianluca
in
Colorectal Neoplasms - pathology
,
Embolization
,
Embolization, Therapeutic - adverse effects
2023
Background
Liver venous deprivation (LVD) is a recent radiological technique performed to induce hypertrophy of the future liver remnant. Medium-term results of major hepatectomy after LVD have never been compared with the actual standard of care, portal vein embolization (PVE).
Methods
We retrospectively compared data from 33 consecutive patients who had undergone LVD (
n
= 17) or PVE (
n
= 16) prior to a right hemi-hepatectomy or right extended hepatectomy indicated for colorectal liver metastases (CRLM) between May 2015 and December 2019.
Results
The 1-year and 3-year overall survival (OS) rates in the LVD group were 81.3% (95% confidence interval [CI]: 72–90) and 54.7% (95% CI: 46–63), respectively, against 85% (95% CI: 69–101) and 77.4% (95% CI: 54–100) in the PVE group; the differences were not statistically significant (
p
= 0.64). The median disease-free survival (DFS) rate was also comparable: 6 months (95% CI: 4–7) in the LVD group and 12 months (95% CI: 1.5–13) in the PVE group (
p
= 0.29). The overall intra-operative and post-operative complication rates were similar between the two groups. The mean daily kinetic growth rate (KGR) was found to be higher after LVD than after PVE (0.2% vs. 0.1%,
p
= 0.05; 10 cc/day vs. 4.8 cc/day,
p
= 0.03), as was the mean increase in future liver remnant volume (FLR-V) (49% vs. 27%,
p
= 0.01).
Conclusions
The LVD technique is well tolerated in patients undergoing right hemi-hepatectomy or right extended hepatectomy for CRLM. When compared with the PVE technique, the LVD technique has similar peri-operative and medium-term outcomes, but higher KGR and FLR-V increase.
Journal Article
Single-Center Retrospective Study Comparing Double Vein Embolization via a Trans-Jugular Approach with Liver Venous Deprivation via a Trans-Hepatic Approach
by
Gusmini, Simone
,
Chiti, Arturo
,
Aldrighetti, Luca
in
Clinical outcomes
,
Computed tomography
,
Embolization
2023
PurposeTo compare safety, technical and clinical outcomes of double vein embolization (DVE) via a trans-jugular approach with liver venous deprivation (LVD) via a trans-hepatic approach.Materials and MethodsA single-center retrospective analysis was conducted on patients undergoing simultaneous portal and hepatic veins embolization in view of a major hepatectomy (June 2019–November 2022). Hepatic vein embolization was performed either by transjugular plug (DVE) or by transhepatic plug followed by glue injection (LVD). Inclusion criteria were availability of pre-procedural CT scan, and availability of CT scans acquired 10 days and 25 days post-procedure. Comparative data included complication rate, fluoroscopy time, dose area product (DAP), Future Liver Remnant volume and function increase (FLR-V and FLR-F increase, respectively) and clinical outcomes.ResultsThirty-six patients (n = 14 DVE; n = 22 LVD) were included. No baseline significant differences were observed among the two groups. One grade-3 complication (2.8%) was observed in the LVD group; one case of technical failure (2.8%) was observed in the DVE group. Fluoroscopy time and DAP were similar between DVE and LVD (29 ± 17.7 vs. 25 ± 8.2 min, p = 0.97; 105.1 ± 63.5 vs. 143.4 ± 79.5 Gy·cm2, p = 0.15). No differences arose at either time-point in FLR-V increase (46.7 ± 23.1% vs. 48.2 ± 28.2%, 52.9 ± 30.9% vs. 53.2 ± 29%, respectively, p = 0.9). FLR-F increase also did not differ significantly (62.8 ± 55.2 vs. 67.4 ± 57.5, p = 0.9). No differences in drop-out rate from surgery were observed. (28.6% vs. 27.3%, p = 0.93). One case of grade-B post-hepatectomy liver failure (2.8%) was observed in the LVD group.ConclusionLVD via transhepatic approach and DVE via transjugular approach seem equally safe and effective.Level of Evidence Level 3, Retrospective Cohort Study.
Journal Article
Liver Venous Deprivation (LVD) Versus Portal Vein Embolization (PVE) Alone Prior to Extended Hepatectomy: A Matched Pair Analysis
by
Jonczyk, Martin
,
Schmelzle, Moritz
,
Schöning, Wenzel
in
Cholangiocarcinoma
,
Colorectal cancer
,
Colorectal carcinoma
2022
BackgroundTo investigate whether liver venous deprivation (LVD) as simultaneous, portal vein (PVE) and right hepatic vein embolization offers advantages in terms of hypertrophy induction before extended hepatectomy in non-cirrhotic liver.Materials and MethodsBetween June 2018 and August 2019, 20 patients were recruited for a prospective, non-randomized study to investigate the efficacy of LVD. After screening of 134 patients treated using PVE alone from January 2015 to August 2019, 14 directly matched pairs regarding tumor entity (cholangiocarcinoma, CC and colorectal carcinoma, CRC) and hypertrophy time (defined as time from embolization to follow-up imaging) were identified. In both treatment groups, the same experienced reader (> 5 years experience) performed imaging-based measurement of the volumes of liver segments of the future liver remnant (FLR) prior to embolization and after the standard clinical hypertrophy interval (~ 30 days), before surgery. Percentage growth of segments was calculated and compared.ResultsAfter matched follow-up periods (mean of 30.5 days), there were no statistically significant differences in relative hypertrophy of FLRs. Mean ± standard deviation relative hypertrophy rates for LVD/PVE were 59 ± 29.6%/54.1 ± 27.6% (p = 0.637) for segments II + III and 48.2 ± 22.2%/44.9 ± 28.9% (p = 0.719) for segments II–IV, respectively.ConclusionsLVD had no significant advantages over the standard method (PVE alone) in terms of hypertrophy induction of the FLR before extended hepatectomy in this study population.
Journal Article
CIRSE Standards of Practice on Portal Vein Embolization and Double Vein Embolization/Liver Venous Deprivation
2024
This CIRSE Standards of Practice document is aimed at interventional radiologists and provides best practices for performing liver regeneration therapies prior to major hepatectomies, including portal vein embolization, double vein embolization and liver venous deprivation. It has been developed by an expert writing group under the guidance of the CIRSE Standards of Practice Committee. It encompasses all clinical and technical details required to perform liver regeneration therapies, revising the indications, contra-indications, outcome measures assessed, technique and expected outcomes.
Journal Article
Study protocol of the HYPER-LIV01 trial: a multicenter phase II, prospective and randomized study comparing simultaneous portal and hepatic vein embolization to portal vein embolization for hypertrophy of the future liver remnant before major hepatectomy for colo-rectal liver metastases
by
Quenet, François
,
Piron, Lauranne
,
Bouvier, Antoine
in
Adult
,
Biomarkers
,
Biomedical and Life Sciences
2020
Background
In patients undergoing major liver resection, portal vein embolization (PVE) has been widely used to induce hypertrophy of the non-embolized liver in order to prevent post-hepatectomy liver failure. PVE is a safe and effective procedure, but does not always lead to sufficient hypertrophy of the future liver remnant (FLR). Hepatic vein(s) embolization has been proposed to improve FLR regeneration when insufficient after PVE. The sequential right hepatic vein embolization (HVE) after right PVE demonstrated an incremental effect on the FLR but it implies two different procedures with no time gain as compared to PVE alone.
We have developed the so-called liver venous deprivation (LVD), a combination of PVE and HVE during the same intervention, to optimize the phase of liver preparation before surgery. The main objective of this randomized phase II trial is to compare the percentage of change in FLR volume at 3 weeks after LVD or PVE.
Methods
Patients eligible to this multicenter prospective randomized phase II study are subjects aged from 18 years old suffering from colo-rectal liver metastases considered as resectable and with non-cirrhotic liver parenchyma. The primary objective is the percentage of change in FLR volume at 3 weeks after LVD or PVE using MRI or CT-Scan. Secondary objectives are assessment of tolerance, post-operative morbidity and mortality, post-hepatectomy liver failure, rate of non-respectability due to insufficient FLR or tumor progression, per-operative difficulties, blood loss, R0 resection rate, post-operative liver volume and overall survival. Objectives of translational research studies are evaluation of pre- and post-operative liver function and determination of biomarkers predictive of liver hypertrophy
.
Sixty-four patients will be included (randomization ratio 1:1) to detect a difference of 12% at 21 days in FLR volumes between PVE and LVD.
Discussion
Adding HVE to PVE during the same procedure is an innovative and promising approach that may lead to a rapid and major increase in volume and function of the FLR, thereby increasing the rate of resectable patients and limiting the risk of patient’s drop-out.
Trial registration
This study was registered on
clinicaltrials.gov
on 15th February 2019 (
NCT03841305
).
Journal Article
Comparing Liver Venous Deprivation and Portal Vein Embolization for Perihilar Cholangiocarcinoma: Is It Time to Shift the Focus to Hepatic Functional Reserve Rather than Hypertrophy?
by
De Cobelli, Francesco
,
Aldrighetti, Luca
,
Magnani, Patrizia
in
Cholangiocarcinoma
,
Comparative analysis
,
Complications
2023
Purpose: Among liver hypertrophy technics, liver venous deprivation (LVD) has been recently introduced as an effective procedure to combine simultaneous portal inflow and hepatic outflow abrogation, raising growing clinical interest. The aim of this study is to investigate the role of LVD for preoperative optimization of future liver remnant (FLR) in perihilar cholangiocarcinoma (PHC), especially when compared with portal vein embolization (PVE). Methods: Between January 2013 and July 2022, all patients diagnosed with PHC and scheduled for preoperative optimization of FTR, through radiological hypertrophy techniques, prior to liver resection, were included. FTR volumetric assessment was evaluated at two distinct timepoints to track the progression of both early (T1, 10 days post-procedural) and late (T2, 21 days post-procedural) efficacy indicators. Post-procedural outcomes, including functional and volumetric analyses, were compared between the LVD and the PVE cohorts. Results: A total of 12 patients underwent LVD while 19 underwent PVE. No significant differences in either post-procedural or post-operative complications were found. Post-procedural FLR function, calculated with (99m) Tc-Mebrofenin hepatobiliary scintigraphy, and kinetic growth rate, at both timepoints, were greater in the LVD cohort (3.12 ± 0.55%/min/m2 vs. 2.46 ± 0.64%/min/m2, p = 0.041; 27.32 ± 16.86%/week (T1) vs. 15.71 ± 9.82%/week (T1) p < 0.001; 17.19 ± 9.88%/week (T2) vs. 9.89 ± 14.62%/week (T2) p = 0.034) when compared with the PVE cohort. Post-procedural FTR volumes were similar for both hypertrophy techniques. Conclusions: LVD is an effective procedure to effectively optimize FLR before liver resection for PHC. The faster growth rate combined with the improved FLR function, when compared to PVE alone, could maximize surgical outcomes by lowering post-hepatectomy liver failure rates.
Journal Article
Assessment of Segmentary Hypertrophy of Future Remnant Liver after Liver Venous Deprivation: A Single-Center Study
2024
Background: Liver venous deprivation (LVD) is a recent radiological technique that has shown promising results on Future Remnant Liver (FRL) hypertrophy. The aim of this retrospective study is to compare the segmentary hypertrophy of the FRL after LVD and after portal vein embolization (PVE). Methods: Patients undergoing PVE or LVD between April 2015 and April 2020 were included. The segmentary volumes (seg 4, seg2+3 and seg1) were assessed before and after the radiological procedure. Results: Forty-four patients were included: 26 undergoing PVE, 10 LVD and 8 eLVD. Volume gain of both segment 1 and segments 2+3 was significantly higher after LVD and eLVD than after PVE (segment 1: 27.33 ± 35.37 after PVE vs. 38.73% ± 13.47 after LVD and 79.13% ± 41.23 after eLVD, p = 0.0080; segments 2+3: 40.73% ± 40.53 after PVE vs. 45.02% ± 21.53 after LVD and 85.49% ± 45.51 after eLVD, p = 0.0137), while this was not true for segment 4. FRL hypertrophy was confirmed to be higher after LVD and eLVD than after PVE (33.53% ± 21.22 vs. 68.63% ± 42.03 vs. 28.11% ± 28.33, respectively, p = 0.0280). Conclusions: LVD and eLVD may induce greater hypertrophy of segment 1 and segments 2+3 when compared to PVE.
Journal Article
Efficacy and safety of different options for liver regeneration of future liver remnant in patients with liver malignancies: a systematic review and network meta-analysis
by
Feng, Long
,
Yi, Fengming
,
Zhang, Wei
in
Associating Liver Partition and Portal vein ligation for Staged hepatectomy
,
Bias
,
Care and treatment
2022
Background
Several treatments induce liver hypertrophy for patients with liver malignancies but insufficient future liver remnant (FLR). Herein, the aim of this study is to compare the efficacy and safety of existing surgical techniques using network meta-analysis (NMA).
Methods
We searched PubMed, Web of Science, and Cochrane Library from databases for abstracts and full-text articles published from database inception through Feb 2022. The primary outcome was the efficacy of different procedures, including standardized FLR (sFLR) increase, time to hepatectomy, resection rate, and R0 resection margin. The secondary outcome was the safety of different treatments, including the rate of Clavien-Dindo≥3a and 90-day mortality.
Results
Twenty-seven studies, including three randomized controlled trials (RCTs), three prospective trials (PTs), and twenty-one retrospective trials (RTs), and a total number of 2075 patients were recruited in this study. NMA demonstrated that the Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) had much higher sFLR increase when compared to portal vein embolization (PVE) (55.25%, 95% CI 45.27–65.24%), or liver venous deprivation(LVD) (43.26%, 95% CI 22.05–64.47%), or two-stage hepatectomy (TSH) (30.53%, 95% CI 16.84–44.21%), or portal vein ligation (PVL) (58.42%, 95% CI 37.62–79.23%). ALPPS showed significantly shorter time to hepatectomy when compared to PVE (−32.79d, 95% CI −42.92–22.66), or LVD (−34.02d, 95% CI −47.85–20.20), or TSH (−22.85d, 95% CI −30.97–14.72), or PVL (−43.37d, 95% CI −64.11–22.62); ALPPS was considered as the highest resection rate when compared to TSH (OR=6.09; 95% CI 2.76–13.41), or PVL (OR =3.52; 95% CI 1.16–10.72), or PVE (OR =4.12; 95% CI 2.19–7.77). ALPPS had comparable resection rate with LVD (OR =2.20; 95% CI 0.83–5.86). There was no significant difference between them when considering the R0 marge rate. ALPPS had a higher Clavien-Dindo≥3a complication rate and 90-day mortality compared to other treatments, although there were no significant differences between different procedures.
Conclusions
ALPPS demonstrated a higher regeneration rate, shorter time to hepatectomy, and higher resection rate than PVL, PVE, or TSH. There was no significant difference between them when considering the R0 marge rate. However, ALPPS developed the trend of higher Clavien-Dindo≥3a complication rate and 90-day mortality compared to other treatments.
Journal Article