Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
424 result(s) for "Ventral nerve cord"
Sort by:
Neural architecture of Galathowenia oculata Zach, 1923 (Oweniidae, Annelida)
BACKGROUND: Oweniids are marine tubeworms burrowing in muddy sediments that in current phylogenies form an early branching lineage within Annelida. Little is known about their general morphology, in particular the nervous system. Here we provide an immunocytochemical investigation of the nervous system of Galathowenia oculata in order to discuss putative ancestral neuronal features in Oweniidae. RESULTS: Adult Galathowenia oculata have neither a supraesophageal ganglion nor ganglia associated with the ventral nerve cord. Instead, there is a dorsal brain commissure in the head collar that is engulfed by a cellular cortex. Accordingly, we herein term this neural structure “medullary brain commissure”. The anterior margin of the head collar exhibits numerous neurites that emerge from the brain commissure. The dorsolateral folds are innervated by the ventrolateral neurite bundles extending from the circumesophageal connectives. In the anterior uniramous and biramous segments immunoreactive somata are distributed evenly along the ventral nerve cord and arranged metamerically in the posterior-most short segments. One dorsal and two pairs of lateral neurite bundles extend longitudinally along the body. Numerous serially arranged circular neurite bundles were labeled in anteriormost long segments. Metameric arrangement of the circular neurite bundles stained against FMRFamide and acetylated α-tubulin is revealed in posterior short segments. For the first time immunoreactive somata arranged in clusters are reported within the pygidium in oweniids. CONCLUSIONS: Due to the lack of head appendages and a sedentary mode of life, G. oculata exhibits a single dorsal commissure (versus a brain with four commissures in most annelids). A “medullary brain commissure” is known so far only in Oweniidae and Echiura. Lack of ganglia and metamery in the ventral nerve cord of the anteriormost segments might be the result of the elongation of these segments. In the short posterior segments the metamery of immunoreactive somata and circular neurite bundles is conserved. We hypothesize that the unpaired ventral nerve cord in adult oweniids might be a result of an initially paired ventral nerve cord that fuses during development, a condition not uncommon within Annelida.
Connectomic reconstruction of a female Drosophila ventral nerve cord
A deep understanding of how the brain controls behaviour requires mapping neural circuits down to the muscles that they control. Here, we apply automated tools to segment neurons and identify synapses in an electron microscopy dataset of an adult female Drosophila melanogaster ventral nerve cord (VNC) 1 , which functions like the vertebrate spinal cord to sense and control the body. We find that the fly VNC contains roughly 45 million synapses and 14,600 neuronal cell bodies. To interpret the output of the connectome, we mapped the muscle targets of leg and wing motor neurons using genetic driver lines 2 and X-ray holographic nanotomography 3 . With this motor neuron atlas, we identified neural circuits that coordinate leg and wing movements during take-off. We provide the reconstruction of VNC circuits, the motor neuron atlas and tools for programmatic and interactive access as resources to support experimental and theoretical studies of how the nervous system controls behaviour. Automated reconstruction of dense neural networks in the ventral nerve cord of the fruit fly provides a resource for investigating the neural control of movement.
The functional organization of descending sensory-motor pathways in Drosophila
In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly’s capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits.
A rise-to-threshold process for a relativevalue decision
Whereas progress has been made in the identification of neural signals related to rapid, cued decisions1-3, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes4-6. Drosophila search for many seconds to minutes for egg-laying sites with high relative value7,8 and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme9. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak leveljust before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals ofoviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.
An unbiased template of the Drosophila brain and ventral nerve cord
The fruit fly Drosophila melanogaster is an important model organism for neuroscience with a wide array of genetic tools that enable the mapping of individual neurons and neural subtypes. Brain templates are essential for comparative biological studies because they enable analyzing many individuals in a common reference space. Several central brain templates exist for Drosophila , but every one is either biased, uses sub-optimal tissue preparation, is imaged at low resolution, or does not account for artifacts. No publicly available Drosophila ventral nerve cord template currently exists. In this work, we created high-resolution templates of the Drosophila brain and ventral nerve cord using the best-available technologies for imaging, artifact correction, stitching, and template construction using groupwise registration. We evaluated our central brain template against the four most competitive, publicly available brain templates and demonstrate that ours enables more accurate registration with fewer local deformations in shorter time.
A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Convergent evolution of bilaterian nerve cords
It has been hypothesized that a condensed nervous system with a medial ventral nerve cord is an ancestral character of Bilateria. The presence of similar dorsoventral molecular patterns along the nerve cords of vertebrates, flies, and an annelid has been interpreted as support for this scenario. Whether these similarities are generally found across the diversity of bilaterian neuroanatomies is unclear, and thus the evolutionary history of the nervous system is still contentious. Here we study representatives of Xenacoelomorpha, Rotifera, Nemertea, Brachiopoda, and Annelida to assess the conservation of the dorsoventral nerve cord patterning. None of the studied species show a conserved dorsoventral molecular regionalization of their nerve cords, not even the annelid Owenia fusiformis , whose trunk neuroanatomy parallels that of vertebrates and flies. Our findings restrict the use of molecular patterns to explain nervous system evolution, and suggest that the similarities in dorsoventral patterning and trunk neuroanatomies evolved independently in Bilateria. In bilaterian animals, the final configurations of central nervous systems seem unrelated to neuroectodermal patterning systems, so it is likely that the various architectures of the ventral nerve cords evolved convergently, many times. Convergent nervous system evolution Bilaterian animals—that is, bilaterally symmetric animals with distinct anterior and posterior ends—are often thought to have evolved from a common ancestor with a medial, ventral nerve cord. Common molecular patterns along the body axes of animals as diverse as fruit flies, annelid worms and humans support this scenario. Andreas Hejnol and colleagues look at the mediolateral neuroectodermal patterning system in a wide range of animals, including Xenoturbella (a basal bilaterian) and various lophotrochozoans (such as annelids, brachiopods and rotifers). They observe that the final anatomical configurations of the central nervous system are unrelated to the patterning system. They conclude that similar central nervous system architectures are likely to have arisen many independent times across the bilaterian group—an example of convergent evolution.
Regulation of sleep by cholinergic neurons located outside the central brain in Drosophila
Sleep is a complex and plastic behavior regulated by multiple brain regions and influenced by numerous internal and external stimuli. Thus, to fully uncover the function(s) of sleep, cellular resolution of sleep-regulating neurons needs to be achieved. Doing so will help to unequivocally assign a role or function to a given neuron or group of neurons in sleep behavior. In the Drosophila brain, neurons projecting to the dorsal fan-shaped body (dFB) have emerged as a key sleep-regulating area. To dissect the contribution of individual dFB neurons to sleep, we undertook an intersectional Split-GAL4 genetic screen focusing on cells contained within the 23E10-GAL4 driver, the most widely used tool to manipulate dFB neurons. In this study, we demonstrate that 23E10-GAL4 expresses in neurons outside the dFB and in the fly equivalent of the spinal cord, the ventral nerve cord (VNC). Furthermore, we show that 2 VNC cholinergic neurons strongly contribute to the sleep-promoting capacity of the 23E10-GAL4 driver under baseline conditions. However, in contrast to other 23E10-GAL4 neurons, silencing these VNC cells does not block sleep homeostasis. Thus, our data demonstrate that the 23E10-GAL4 driver contains at least 2 different types of sleep-regulating neurons controlling distinct aspects of sleep behavior.
Drosophila melanogaster foraging regulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit
Painful or threatening experiences trigger escape responses that are guided by nociceptive neuronal circuitry. Although some components of this circuitry are known and conserved across animals, how this circuitry is regulated at the genetic and developmental levels is mostly unknown. To escape noxious stimuli, such as parasitoid wasp attacks, Drosophila melanogaster larvae generate a curling and rolling response. Rover and sitter allelic variants of the Drosophila foraging (for) gene differ in parasitoid wasp susceptibility, suggesting a link between for and nociception. By optogenetically activating cells associated with each of for’s promoters (pr1–pr4), we show that pr1 cells regulate larval escape behavior. In accordance with rover and sitter differences in parasitoid wasp susceptibility, we found that rovers have higher pr1 expression and increased sensitivity to nociception relative to sitters. The for null mutants display impaired responses to thermal nociception, which are rescued by restoring for expression in pr1 cells. Conversely, knockdown of for in pr1 cells phenocopies the for null mutant. To gain insight into the circuitry underlying this response, we used an intersectional approach and activity-dependent GFP reconstitution across synaptic partners (GRASP) to show that pr1 cells in the ventral nerve cord (VNC) are required for the nociceptive response, and that multidendritic sensory nociceptive neurons synapse onto pr1 neurons in the VNC. Finally, we show that activation of the pr1 circuit during development suppresses the escape response. Our data demonstrate a role of for in larval nociceptive behavior. This function is specific to for pr1 neurons in the VNC, guiding a developmentally plastic escape response circuit.
Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth. In C. elegans , analysis of dorsally-migrating growth cones during outgrowth has shown that growth cone polarity of filopodial extension is separable from the extent of growth cone protrusion. Growth cones are first polarized by UNC-6/Netrin, and subsequent regulation of protrusion by UNC-6/Netrin is based on this earlier-established polarity (the Polarity/Protrusion model). In both cases, short-range or even haptotactic mechanisms are invoked: in vertebrate spinal cord, interactions of growth cones with radial glia expressing Netrin-1; and in C. elegans, a potential close-range interaction that polarizes the growth cone. To explore potential short-range and long-range functions of UNC-6/Netrin, a potentially membrane-anchored transmembrane UNC-6 (UNC-6(TM)) was generated by genome editing. unc-6(tm) was hypomorphic for dorsal VD/DD axon pathfinding, indicating that it retained some unc-6 function. Polarity of VD growth cone filopodial protrusion was initially established in unc-6(tm) , but was lost as the growth cones migrated away from the unc-6(tm) source in the ventral nerve cord. In contrast, ventral guidance of the AVM and PVM axons was equally severe in unc-6(tm) and unc-6(null) . Together, these results suggest that unc-6(tm) retains short-range functions but lacks long-range functions due to reduced secreted UNC-6. Ectopic unc-6(+) expression from non-ventral sources did not dramatically perturb dorsal VD growth cone polarity or axon outgrowth, suggesting that ectopic UNC-6 cannot redirect polarity once it is established in the VD/DD neurons. This is not what would be expected of a growth cone dynamically reading a gradient of UNC-6, but is consistent with the Polarity/protrusion model of growth cone guidance away from UNC-6/Netrin.