Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
851
result(s) for
"Vinculin"
Sort by:
Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics
2010
Intracellular forces defined
The ability of cells to respond to physical forces is fundamental to development and physiology, including regulation of blood pressure, cell adhesion and migration. A major limitation to the study of these phenomena has been the difficulty of measuring molecular forces in cells
in vivo
. Grashoff
et al
. now report the development of a genetically encoded, fluorescent tension-sensing module capable of measuring mechanical forces across specific proteins
in vivo
. The sensor was tested on vinculin, a membrane-cytoskeletal protein that is recruited to focal adhesions and connects cell-adhesion molecules (integrins) to actin filaments. The data reveal a regulatory mechanism in which the ability of vinculin to bear force determines whether focal adhesions assemble or disassemble under force. This new biosensor should be applicable to other proteins involved in mechanotransduction.
The ability of cells to respond to physical forces is central to development and physiology, but until now it has been difficult to directly measure forces across proteins
in vivo
. Here, however, a calibrated biosensor is described that can measure forces with high sensitivity across specific proteins in cells. This is applied to the vinculin protein, and a regulatory mechanism is revealed in which the force applied to vinculin determines whether focal adhesions assemble or disassemble.
Mechanical forces are central to developmental, physiological and pathological processes
1
. However, limited understanding of force transmission within sub-cellular structures is a major obstacle to unravelling molecular mechanisms. Here we describe the development of a calibrated biosensor that measures forces across specific proteins in cells with piconewton (pN) sensitivity, as demonstrated by single molecule fluorescence force spectroscopy
2
. The method is applied to vinculin, a protein that connects integrins to actin filaments and whose recruitment to focal adhesions (FAs) is force-dependent
3
. We show that tension across vinculin in stable FAs is ∼2.5 pN and that vinculin recruitment to FAs and force transmission across vinculin are regulated separately. Highest tension across vinculin is associated with adhesion assembly and enlargement. Conversely, vinculin is under low force in disassembling or sliding FAs at the trailing edge of migrating cells. Furthermore, vinculin is required for stabilizing adhesions under force. Together, these data reveal that FA stabilization under force requires both vinculin recruitment and force transmission, and that, surprisingly, these processes can be controlled independently.
Journal Article
Vinculin in cell–cell and cell–matrix adhesions
by
DeMali, Kris A.
,
Bays, Jennifer L.
in
Actin
,
Actin Cytoskeleton - metabolism
,
Adherens junctions
2017
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Journal Article
Conformational states during vinculin unlocking differentially regulate focal adhesion properties
2018
Focal adhesions (FAs) are multi-protein complexes that connect the actin cytoskeleton to the extracellular matrix, via integrin receptors. The growth, stability and adhesive functionality of these structures are tightly regulated by mechanical stress, yet, despite the extensive characterization of the integrin adhesome, the detailed molecular mechanisms underlying FA mechanosensitivity are still unclear. Besides talin, another key candidate for regulating FA-associated mechanosensing, is vinculin, a prominent FA component, which possesses either closed (“auto-inhibited”) or open (“active”) conformation. A direct experimental demonstration, however, of the conformational transition between the two states is still absent. In this study, we combined multiple structural and biological approaches to probe the transition from the auto-inhibited to the active conformation, and determine its effects on FA structure and dynamics. We further show that the transition from a closed to an open conformation requires two sequential steps that can differentially regulate FA growth and stability.
Journal Article
Force-dependent conformational switch of α-catenin controls vinculin binding
by
Payre, Manon
,
Liu, Ruchuan
,
Qiu, Wu
in
631/57/2272/2273
,
631/80/79/2066
,
Actin Cytoskeleton - chemistry
2014
Force sensing at cadherin-mediated adhesions is critical for their proper function. α-Catenin, which links cadherins to actomyosin, has a crucial role in this mechanosensing process. It has been hypothesized that force promotes vinculin binding, although this has never been demonstrated. X-ray structure further suggests that α-catenin adopts a stable auto-inhibitory conformation that makes the vinculin-binding site inaccessible. Here, by stretching single α-catenin molecules using magnetic tweezers, we show that the subdomains M
I
vinculin-binding domain (VBD) to M
III
unfold in three characteristic steps: a reversible step at ~5 pN and two non-equilibrium steps at 10–15 pN. 5 pN unfolding forces trigger vinculin binding to the M
I
domain in a 1:1 ratio with nanomolar affinity, preventing M
I
domain refolding after force is released. Our findings demonstrate that physiologically relevant forces reversibly unfurl α-catenin, activating vinculin binding, which then stabilizes α-catenin in its open conformation, transforming force into a sustainable biochemical signal.
At cell–cell adhesions, α-catenin contains a cryptic vinculin-binding site. Here, Yao
et al
. demonstrate, using magnetic tweezers, that physiologically relevant forces unfurl α-catenin to reveal the vinculin-binding site, and allow the reversible binding of vinculin to mechanically reinforce the adhesion.
Journal Article
Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions
2015
Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function.
Waterman and colleagues use super-resolution microscopy and biosensor technology to characterize the spatiotemporal regulation of the protein interactions within focal adhesions that control vinculin activation and function during focal adhesion maturation.
Journal Article
Allosteric activation of vinculin by talin
by
Boujemaa-Paterski, Rajaa
,
Garcia-Manyes, Sergi
,
Aponte-Santamaria, Camilo
in
119/118
,
14/19
,
14/35
2023
The talin-vinculin axis is a key mechanosensing component of cellular focal adhesions. How talin and vinculin respond to forces and regulate one another remains unclear. By combining single-molecule magnetic tweezers experiments, Molecular Dynamics simulations, actin-bundling assays, and adhesion assembly experiments in live cells, we here describe a two-ways allosteric network within vinculin as a regulator of the talin-vinculin interaction. We directly observe a maturation process of vinculin upon talin binding, which reinforces the binding to talin at a rate of 0.03 s
−1
. This allosteric transition can compete with force-induced dissociation of vinculin from talin only at forces up to 10 pN. Mimicking the allosteric activation by mutation yields a vinculin molecule that bundles actin and localizes to focal adhesions in a force-independent manner. Hence, the allosteric switch confines talin-vinculin interactions and focal adhesion build-up to intermediate force levels. The ‘allosteric vinculin mutant’ is a valuable molecular tool to further dissect the mechanical and biochemical signalling circuits at focal adhesions and elsewhere.
Vinculin binding to talin is a key event in focal adhesion dynamics; yet, how vinculin is activated to recruit actin remains unknown. Here, the authors use a multiscale approach to reveal that talin activates vinculin through an intricate allosteric mechanism tightly regulated by force.
Journal Article
Vinculin controls talin engagement with the actomyosin machinery
2015
The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs.
The mechanosensitive proteins talin and vinculin mediate the linkage between integrin-bound extracellular matrix and the actin cytoskeleton. Here the authors dissect distinct roles for two actin-binding sites within talin on adhesion complex assembly and maturation, which are regulated by vinculin binding to talin.
Journal Article
α-Catenin as a tension transducer that induces adherens junction development
2010
α-Catenin can respond to myosinII-mediated forces in cell–cell junctions through a force-dependent interaction with vinculin that regulates adherens junction development.
Adherens junctions (AJs), which are organized by adhesion proteins and the underlying actin cytoskeleton, probably sense pulling forces from adjacent cells and modulate opposing forces to maintain tissue integrity, but the regulatory mechanism remains unknown at the molecular level. Although the possibility that α-catenin acts as a direct linker between the membrane and the actin cytoskeleton for AJ formation and function has been minimized, here we show that α-catenin recruits vinculin, another main actin-binding protein of AJs, through force-dependent changes in α-catenin conformation. We identified regions in the α-catenin molecule that are required for its force-dependent binding of vinculin by introducing mutant α-catenin into cells and using
in vitro
binding assays. Fluorescence recovery after photobleaching analysis for α-catenin mobility and the existence of an antibody recognizing α-catenin in a force-dependent manner further supported the notion that α-catenin is a tension transducer that translates mechanical stimuli into a chemical response, resulting in AJ development.
Journal Article
Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells
by
Melnik, Daniela
,
Krüger, Marcus
,
Grimm, Daniela
in
Actins - genetics
,
Actins - metabolism
,
Aerospace medicine
2019
With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We tested the effect of r-µg on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µg and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µg. Moreover, in a second mission we investigated changes in RNA transcription and morphology in breast cancer cells exposed to parabolic flight (PF) maneuvers (31st Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). The MCF-7 cells showed a rearrangement of the F-actin and tubulin with holes, accumulations in the tubulin network, and the appearance of filopodia- and lamellipodia-like structures in the F-actin cytoskeleton shortly after the beginning of the r-µg period. PF maneuvers induced an early up-regulation of KRT8, RDX, TIMP1, CXCL8 mRNAs, and a down-regulation of VCL after the first parabola. E-cadherin protein was significantly reduced and is involved in cell adhesion processes, and plays a significant role in tumorigenesis. Changes in the E-cadherin protein synthesis can lead to tumor progression. Pathway analyses indicate that VCL protein has an activating effect on CDH1. In conclusion, live-cell imaging visualized similar changes as those occurring in thyroid cancer cells in r-µg. This result indicates the presence of a common mechanism of gravity perception and sensation.
Journal Article
Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers
by
Sonam, Surabhi
,
Narayana, Gautham Hari Narayana Sankara
,
Balasubramaniam, Lakshmi
in
631/57/343/1361
,
631/80/79/2028
,
631/80/84/2334
2021
Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell–substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.
It is now revealed, using cell cultures and in silico models, that weakening intercellular contacts is a fundamental process essential for switching from extensile to contractile tissue behaviour.
Journal Article