Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,358 result(s) for "Viral Zoonoses - virology"
Sort by:
Climate change increases cross-species viral transmission risk
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals 1 , 2 . However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife 3 , 4 . In some cases, this will facilitate zoonotic spillover—a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal–virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming. Changes in climate and land use will lead to species aggregating in new combinations at high elevations, in biodiversity hotspots and in areas of high human population density in Asia and Africa, driving the cross-species transmission of animal-associated viruses.
The global H5N1 influenza panzootic in mammals
Influenza A viruses have caused more documented global pandemics in human history than any other pathogen 1 , 2 . High pathogenicity avian influenza viruses belonging to the H5N1 subtype are a leading pandemic risk. Two decades after H5N1 ‘bird flu’ became established in poultry in Southeast Asia, its descendants have resurged 3 , setting off a H5N1 panzootic in wild birds that is fuelled by: (1) rapid intercontinental spread, reaching South America and Antarctica for the first time 4 , 5 ; (2) fast evolution via genomic reassortment 6 ; and (3) frequent spillover into terrestrial 7 , 8 and marine mammals 9 . The virus has sustained mammal-to-mammal transmission in multiple settings, including European fur farms 10 , 11 , South American marine mammals 12 , 13 , 14 – 15 and US dairy cattle 16 , 17 , 18 – 19 , raising questions about whether humans are next. Historically, swine are considered optimal intermediary hosts that help avian influenza viruses adapt to mammals before jumping to humans 20 . However, the altered ecology of H5N1 has opened the door to new evolutionary pathways. Dairy cattle, farmed mink or South American sea lions may have the potential to serve as new mammalian gateways for transmission of avian influenza viruses to humans. In this Perspective, we explore the molecular and ecological factors driving the sudden expansion in H5N1 host range and assess the likelihood of different zoonotic pathways leading to an H5N1 pandemic. This Perspective reviews the molecular and ecological factors that have driven the expansion in geographical distribution and host species range of H5N1 avian influenza viruses, leading to the current panzootic.
Independent infections of porcine deltacoronavirus among Haitian children
Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs 1 , 2 , underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae , human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses 3 – 5 . Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human–animal contact. The presence of porcine deltacoronavirus has been detected in three children from Haiti that could have originated from zoonotic spillover.
Lessons from the host defences of bats, a unique viral reservoir
There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)—as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats—the only flying mammal—display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind. Unique biological traits of bats and adaptive evolution associated with flight confer immunotolerance of viral infection that may help to make bats special reservoir hosts for viruses.
SARS-CoV-2 infection in free-ranging white-tailed deer
Humans have infected a wide range of animals with SARS-CoV-2 1 – 5 , but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer ( Odocoileus virginianus ) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive ‘One Health’ programmes to monitor the environment, deer and other wildlife hosts globally. More than one-third of wild deer tested in northeast Ohio showed evidence of SARS-CoV-2 infection of human origin.
Broad sarbecovirus neutralization by a human monoclonal antibody
The recent emergence of SARS-CoV-2 variants of concern 1 – 10 and the recurrent spillovers of coronaviruses 11 , 12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters ( Mesocricetus auratus ) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses. The human monoclonal antibody S2X259 cross-reacts with spike proteins from all clades of sarbecovirus, and provides prophylactic and therapeutic protection in vivo against parental SARS-CoV-2 and emerging variants of concern.
COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention
Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
The coronavirus is here to stay — here’s what that means
A Nature survey shows many scientists expect the virus that causes COVID-19 to become endemic, but it could pose less danger over time. A Nature survey shows many scientists expect the virus that causes COVID-19 to become endemic, but it could pose less danger over time.
BTN3A3 evasion promotes the zoonotic potential of influenza A viruses
Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic 1 . Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans 1 . Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3) 2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure 3 . Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses. A protein that evolved in primates, BTN3A3, is expressed in human airways and shows antiviral activity against avian IAVs but not against human IAVs.
SARS-CoV-2 Transmission between Mink ( Neovison vison ) and Humans, Denmark
Severe acute respiratory syndrome coronavirus 2 has caused a pandemic in humans. Farmed mink (Neovison vison) are also susceptible. In Denmark, this virus has spread rapidly among farmed mink, resulting in some respiratory disease. Full-length virus genome sequencing revealed novel virus variants in mink. These variants subsequently appeared within the local human community.