Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
98,956
result(s) for
"Virus Diseases - transmission"
Sort by:
The efficacy of medical masks and respirators against respiratory infection in healthcare workers
by
Seale, Holly
,
Rahman, Bayzidur
,
MacIntyre, Chandini Raina
in
Airborne infection
,
Bacteria
,
Bacterial Infections - diagnosis
2017
Objective We aimed to examine the efficacy of medical masks and respirators in protecting against respiratory infections using pooled data from two homogenous randomised control clinical trials (RCTs). Methods The data collected on 3591 subjects in two similar RCTs conducted in Beijing, China, which examined the same infection outcomes, were pooled. Four interventions were compared: (i) continuous N95 respirator use, (ii) targeted N95 respirator use, (iii) medical mask use and (iv) control arm. The outcomes were laboratory‐confirmed viral respiratory infection, influenza A or B, laboratory‐confirmed bacterial colonisation and pathogens grouped by mode of transmission. Results Rates of all outcomes were consistently lower in the continuous N95 and/or targeted N95 arms. In adjusted analysis, rates of laboratory‐confirmed bacterial colonisation (RR 0.33, 95% CI 0.21‐0.51), laboratory‐confirmed viral infections (RR 0.46, 95% CI 0.23‐0.91) and droplet‐transmitted infections (RR 0.26, 95% CI 0.16‐0.42) were significantly lower in the continuous N95 arm. Laboratory‐confirmed influenza was also lowest in the continuous N95 arm (RR 0.34, 95% CI 0.10‐1.11), but the difference was not statistically significant. Rates of laboratory‐confirmed bacterial colonisation (RR 0.54, 95% CI 0.33‐0.87) and droplet‐transmitted infections (RR 0.43, 95% CI 0.25‐0.72) were also lower in the targeted N95 arm, but not in medical mask arm. Conclusion The results suggest that the classification of infections into droplet versus airborne transmission is an oversimplification. Most guidelines recommend masks for infections spread by droplets. N95 respirators, as “airborne precautions,” provide superior protection for droplet‐transmitted infections. To ensure the occupational health and safety of healthcare worker, the superiority of respirators in preventing respiratory infections should be reflected in infection control guidelines.
Journal Article
House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico
by
Che-Mendoza, Azael
,
Dzul-Manzanilla, Felipe
,
Koyoc-Cardeña, Edgar
in
Abundance
,
Adults
,
Aedes - drug effects
2018
There is a need for effective methods to control Aedes aegypti and prevent the transmission of dengue, chikungunya, yellow fever and Zika viruses. Insecticide treated screening (ITS) is a promising approach, particularly as it targets adult mosquitoes to reduce human-mosquito contact.
A cluster-randomised controlled trial evaluated the entomological efficacy of ITS based intervention, which consisted of the installation of pyrethroid-impregnated long-lasting insecticide-treated netting material fixed as framed screens on external doors and windows. A total of 10 treatment and 10 control clusters (100 houses/cluster) were distributed throughout the city of Merida, Mexico. Cross-sectional entomological surveys quantified indoor adult mosquito infestation at baseline (pre-intervention) and throughout four post-intervention (PI) surveys spaced at 6-month intervals corresponding to dry/rainy seasons over two years (2012-2014). A total of 844 households from intervention clusters (86% coverage) were protected with ITS at the start of the trial. Significant reductions in the indoor presence and abundance of Ae. aegypti adults (OR = 0.48 and IRR = 0.45, P<0.05 respectively) and the indoor presence and abundance of Ae. aegypti female mosquitoes (OR = 0.47 and IRR = 0.44, P<0.05 respectively) were detected in intervention clusters compared to controls. This high level of protective effect was sustained for up to 24 months PI. Insecticidal activity of the ITS material declined with time, with ~70% mortality being demonstrated in susceptible mosquito cohorts up to 24 months after installation.
The strong and sustained entomological impact observed in this study demonstrates the potential of house screening as a feasible, alternative approach to a sustained long-term impact on household infestations of Ae. aegypti. Larger trials quantifying the effectiveness of ITS on epidemiological endpoints are warranted and therefore recommended.
Journal Article
Pathways to zoonotic spillover
by
Ko, Albert I.
,
Graham, Andrea L.
,
Lloyd-Smith, James O.
in
631/326/1762
,
631/326/421
,
692/699
2017
Zoonotic diseases present a substantial global health burden. In this Opinion article, Plowright
et al
. present an integrative conceptual and quantitative model that reveals that all zoonotic pathogens must overcome a hierarchical series of barriers to cause spillover infections in humans.
Zoonotic spillover, which is the transmission of a pathogen from a vertebrate animal to a human, presents a global public health burden but is a poorly understood phenomenon. Zoonotic spillover requires several factors to align, including the ecological, epidemiological and behavioural determinants of pathogen exposure, and the within-human factors that affect susceptibility to infection. In this Opinion article, we propose a synthetic framework for animal-to-human transmission that integrates the relevant mechanisms. This framework reveals that all zoonotic pathogens must overcome a hierarchical series of barriers to cause spillover infections in humans. Understanding how these barriers are functionally and quantitatively linked, and how they interact in space and time, will substantially improve our ability to predict or prevent spillover events. This work provides a foundation for transdisciplinary investigation of spillover and synthetic theory on zoonotic transmission.
Journal Article
Global expansion and redistribution of Aedes-borne virus transmission risk with climate change
by
Carlson, Colin J.
,
Ryan, Sadie J.
,
Johnson, Leah R.
in
Aedes
,
Aedes - growth & development
,
Aedes aegypti
2019
Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Journal Article
Escaping Pandora’s Box — Another Novel Coronavirus
by
Morens, David M
,
Taubenberger, Jeffery K
,
Daszak, Peter
in
Animals
,
Betacoronavirus
,
Chiroptera - virology
2020
With luck, public health control measures may be able to put the Covid-19 demons back in the jar. If they do not, we face a daunting challenge equal to, or perhaps greater than, that posed by the influenza pandemic of a century ago.
Journal Article
Spillover and pandemic properties of zoonotic viruses with high host plasticity
by
Joly, Damien O.
,
Clements, Andrew
,
Wolfe, Nathan D.
in
631/158/855
,
631/326/596
,
Africa - epidemiology
2015
Most human infectious diseases, especially recently emerging pathogens, originate from animals and ongoing disease transmission from animals to people presents a significant global health burden. Recognition of the epidemiologic circumstances involved in zoonotic spillover, amplification and spread of diseases is essential for prioritizing surveillance and predicting future disease emergence risk. We examine the animal hosts and transmission mechanisms involved in spillover of zoonotic viruses to date and discover that viruses with high host plasticity (i.e. taxonomically and ecologically diverse host range) were more likely to amplify viral spillover by secondary human-to-human transmission and have broader geographic spread. Viruses transmitted to humans during practices that facilitate mixing of diverse animal species had significantly higher host plasticity. Our findings suggest that animal-to-human spillover of new viruses that are capable of infecting diverse host species signal emerging disease events with higher pandemic potential in that these viruses are more likely to amplify by human-to-human transmission with spread on a global scale.
Journal Article
Role of probiotics to combat viral infections with emphasis on COVID-19
by
Halami, Prakash M
,
Ravindra, P V
,
Ray, Mousumi
in
Antiviral drugs
,
Coronaviridae
,
Coronaviruses
2020
Interspecies transmissions of viruses between animals and humans may result in unpredictable pathogenic potential and new transmissible diseases. This mechanism has recently been exemplified by the discovery of new pathogenic viruses, such as the novel severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) pandemic, Middle-East respiratory syndrome-coronavirus epidemic in Saudi Arabia, and the deadly outbreak of Ebola in West Africa. The. SARS-CoV-2 causes coronavirus disease-19 (COVID-19), which is having a massive global impact in terms of economic disruption, and, above all, human health. The disease is characterized by dry cough, fever, fatigue, myalgia, and dyspnea. Other symptoms include headache, sore throat, rhinorrhea, and gastrointestinal disorders. Pneumonia appears to be the most common and severe manifestation of the infection. Currently, there is no vaccine or specific drug for COVID-19. Further, the development of new antiviral requires a considerable length of time and effort for drug design and validation. Therefore, repurposing the use of natural compounds can provide alternatives and can support therapy against COVID-19. In this review, we comprehensively discuss the prophylactic and supportive therapeutic role of probiotics for the management of COVID-19. In addition, the unique role of probiotics to modulate the gut microbe and assert gut homeostasis and production of interferon as an antiviral mechanism is described. Further, the regulatory role of probiotics on gut-lung axis and mucosal immune system for the potential antiviral mechanisms is reviewed and discussed.Key points• Gut microbiota role in antiviral diseases• Factors influencing the antiviral mechanism• Probiotics and Covid-19
Journal Article
Hand washing with soap and water together with behavioural recommendations prevents infections in common work environment: an open cluster-randomized trial
2012
Background
Hand hygiene is considered as an important means of infection control. We explored whether guided hand hygiene together with transmission-limiting behaviour reduces infection episodes and lost days of work in a common work environment in an open cluster-randomized 3-arm intervention trial.
Methods
A total of 21 clusters (683 persons) were randomized to implement hand hygiene with soap and water (257 persons), with alcohol-based hand rub (202 persons), or to serve as a control (224 persons). Participants in both intervention arms also received standardized instructions on how to limit the transmission of infections. The intervention period (16 months) included the emergence of the 2009 influenza pandemic and the subsequent national hand hygiene campaign influencing also the control arm.
Results
In the total follow-up period there was a 6.7% reduction of infection episodes in the soap-and water arm (p = 0.04). Before the onset of the anti-pandemic campaign, a statistically significant (p = 0.002) difference in the mean occurrence of infection episodes was observed between the control (6.0 per year) and the soap-and-water arm (5.0 per year) but not between the control and the alcohol-rub arm (5.6 per year). Neither intervention had a decreasing effect on absence from work.
Conclusions
We conclude that intensified hand hygiene using water and soap together with behavioural recommendations can reduce the occurrence of self-reported acute illnesses in common work environment. Surprisingly, the occurrence of reported sick leaves also increased in the soap-and water-arm.
Trial Registration
ClinicalTrials.gov:
NCT00981877
Source of funding
The Finnish Work Environment Fund and the National Institute for Health and Welfare.
Journal Article
Virus evolution and transmission in an ever more connected world
by
Tatem, Andrew J.
,
Pybus, Oliver G.
,
Lemey, Philippe
in
Chikungunya Fever
,
Chikungunya Fever - epidemiology
,
Chikungunya Fever - transmission
2015
The frequency and global impact of infectious disease outbreaks, particularly those caused by emerging viruses, demonstrate the need for a better understanding of how spatial ecology and pathogen evolution jointly shape epidemic dynamics. Advances in computational techniques and the increasing availability of genetic and geospatial data are helping to address this problem, particularly when both information sources are combined. Here, we review research at the intersection of evolutionary biology, human geography and epidemiology that is working towards an integrated view of spatial incidence, host mobility and viral genetic diversity. We first discuss how empirical studies have combined viral spatial and genetic data, focusing particularly on the contribution of evolutionary analyses to epidemiology and disease control. Second, we explore the interplay between virus evolution and global dispersal in more depth for two pathogens: human influenza A virus and chikungunya virus. We discuss the opportunities for future research arising from new analyses of human transportation and trade networks, as well as the associated challenges in accessing and sharing relevant spatial and genetic data.
Journal Article