Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,954 result(s) for "Viscoelastic materials"
Sort by:
A review of the effect of temperature on the performance of viscoelastic dampers
This paper introduces structure and characteristics of viscoelastic damper and analyses the effect of temperature on its performance. Elastic damper is a kind of damping device which mainly relies on the hysteretic energy dissipation characteristic of viscoelastic material to realize the purpose of structural shock absorption. It is widely used in vibration control of mechanical equipment and building structures. However, in the application and research of viscoelastic dampers, it is found that temperature has a significant effect on their performance. This paper first introduces the basic concept of viscoelastic dampers, and points out that there are few papers discussing the effect of temperature on viscoelastic dampers in recent years. In the second part of this paper, the structural composition and characteristics of viscoelastic dampers and viscoelastic materials are introduced. After that, this paper introduces the influence of temperature on the performance of viscoelastic damper from various aspects, and then focuses on the analysis of the influence of temperature on the energy dissipation performance of the damper.
Magneto-Viscoelastic Materials: Memory Functionals and Rate Equations
The properties of viscoelastic solids subject to a magnetic field are modelled within two thermodynamically consistent approaches that are typical of models with a non-instantaneous response. One is based on memory functionals: the reversible changes are described by the instantaneous response, while the dissipativity is expressed by the dependence on histories. The other approach involves objective rate equations. While memory functionals lead to the difficulty of determining thermodynamically consistent free energy functionals, rate equations result in a simpler scheme. The greater simplicity allows the discovery of, in particular, models of magneto-hyperelastic materials, magneto-hypoelastic materials, and various forms of magneto-viscoelastic behaviour. The novelty of the procedure is based on two features: a representation formula, originating from the entropy inequality, and the use of the entropy production as a constitutive function. Relations with other approaches in the literature are examined in detail.
Modelling of Electro-Viscoelastic Materials through Rate Equations
Models of dielectric solids subject to large deformations are established by following a thermodynamic approach. The models are quite general in that they account for viscoelastic properties and allow electric and thermal conduction. A preliminary analysis is devoted to the selection of fields for the polarization and the electric field; the appropriate fields are required to comply with the balance of angular momentum and to enjoy the Euclidean invariance. Next, the thermodynamic restrictions for the constitutive equations are investigated using a wide set of variables allowing for the joint properties of viscoelastic solids, electric and heat conductors, dielectrics with memory, and hysteretic ferroelectrics. Particular attention is devoted to models for soft ferroelectrics, such as BTS ceramics. The advantage of this approach is that a few constitutive parameters provide a good fit of material behaviour. A dependence on the gradient of the electric field is also considered. The generality and the accuracy of the models are improved by means of two features. The entropy production is regarded as a constitutive property per se, while the consequences of the thermodynamic inequalities are made explicit by means of representation formulae.
Dissipation during crack growth in a viscoelastic material from a cohesive model for a finite specimen
In the present paper, we extend results recently given by Ciavarella et al. (J Mech Phys Solids 169:105096, 2022) to show some actual calculations of the viscoelastic dissipation in a crack propagation at constant speed in a finite size specimen. It is usually believed that the cohesive models introduced by Knauss and Schapery and the dissipation-based theories introduced by de Gennes and Persson-Brener give very similar results for steady state crack propagation in viscoelastic materials, where usually only the asymptotic singular field is used for the stress. We show however that dissipation and the energy balance never reach a steady state, despite the constant propagation crack rate and stress intensity factor. Our loading protocol permits a rigorous solution, and implies a short phase with constant specimen elongation rate, but then possibly a very long phase of constant or decreasing elongation, which differs from typical experiments. For the external work we are therefore unable to use the de Gennes and Persson-Brener theories which suggested that the increase of effective fracture energy would go up to the ratio of instantaneous to relaxed modulus, at very fast rates. We show viscoelastic dissipation is in general a transient quantity, which can vary by orders of magnitude while the stress intensity factor is kept constant, and is largely affected by dissipation in the bulk rather than at the crack tip. The total work to break a specimen apart is found also to be possibly arbitrarily large for quite a large range of intermediate crack growth rates.
Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP
This study introduces MIRANDA, a computer vision system, and RELAPP, a complementary force measurement system, developed for characterizing viscoelastic materials. Our aim was to evaluate their combined ability to predict key rheological parameters and demonstrate their utility in material analysis, offering an alternative to traditional methods. We analyzed five distinct flour dough samples, correlating MIRANDA and RELAPP variables with established rheological reference values. Support Vector Machine (SVM) regression models were trained using MIRANDA’s stable TR and elasticity data to predict industrially relevant parameters: baking strength (W), tenacity (P), extensibility (L), and final viscosity (RVU) from Chopin alveograph and viscosimeter. The predictive models showed promising results, with R2 values of 0.594 (p = 0) for W, 0.575 (p = 0) for P, and 0.612 (p = 0.03763) for viscosity, all statistically significant. While these findings are promising, it is important to note that the small sample size may limit the generalizability of these models. The synergy between the systems was evident, exemplified by strong positive correlations, such as between MIRANDA’s Elasticity and RELAPP’s c_exp (parameter ‘c’ of its mathematical model m1, r = 0.858) and final resistive force (r = 0.839). Despite the limited sample size, these findings highlight MIRANDA’s versatility and speed for efficient material characterization. MIRANDA and RELAPP offer significant industrial implications for viscoelastic materials, including accelerating development cycles and enhancing continuous quality control. This approach has strong potential to reduce reliance on slower, traditional methods, warranting further validation with larger datasets.
Experimental studies on the effectiveness and robustness of a pounding tuned mass damper for vibration suppression of a submerged cylindrical pipe
Summary Pounding tuned mass damper (PTMD) is a novel type of passive damper. The PTMD utilizes collisions or impacts of a tuned mass with viscoelastic materials to efficiently dissipate the vibration energy of primary structures. The previous studies have verified its effective damping performance on a full‐scale subsea jumper and other structures in air. This paper presents the first‐ever experimental verification of a submerged PTMD system for vibration control of pipelike structures underwater. To facilitate the experimental studies, a vertical vibration system consisting of 4 springs and a cylindrical steel pipe was designed and set up in a water tank. Furthermore, a numerical method considering the effect of the added mass is described to estimate the natural frequencies of a submerged cylindrical pipe. Therefore, experimental results demonstrate that the PTMD system is effective and efficient to suppress the forced vibrations of the submerged cylindrical pipe at the tuned frequency and is also robust over a range of detuning frequencies.
Determination of Frequency-Dependent Shear Modulus of Viscoelastic Layer via a Constrained Sandwich Beam
Viscoelastic material can significantly reduce the vibration energy and radiated noise of a structure, so it is widely used in lightweight sandwich structures. The accurate and efficient determination of the frequency-dependent complex modulus of viscoelastic material is the basis for the correct analysis of the vibro-acoustic behavior of sandwich structures. Based on the behavior of a sandwich beam whose core is a viscoelastic layer, a combined theoretical and experimental study is proposed to characterize the properties of the viscoelastic layer constituting the core. In this method, the viscoelastic layer is bonded between two constraining layers. Then, a genetic algorithm is used to fit the analytical solution of the frequency¬ response function of the free–free constrained beam to the measured result, and then the frequency-dependent complex modulus is estimated for the viscoelastic layer. Moreover, by varying the length of the beams, it is possible to characterize the frequency-dependent complex modulus of the viscoelastic material over a wide frequency range. Finally, the characterized frequency-dependent complex modulus is imported into a finite element model to compute the complex natural frequencies of a sandwich beam, and a comparison of the simulated and measured results displays that the errors in the real parts are within 2.33% and the errors in the imaginary parts are within 3.31%. It is confirmed that the proposed method is feasible, accurate, and reliable. This provides essential technical support for improving the acoustic vibration characteristics of sandwich panels by introducing viscoelastic materials.
A Class of Nonlinear Inclusions and Sweeping Processes in Solid Mechanics
We consider a new class of inclusions in Hilbert spaces for which we provide an existence and uniqueness result. The proof is based on arguments of monotonicity, convexity and fixed point. We use this result to establish the unique solvability of an associated class of Moreau’s sweeping processes. Next, we give two applications in Solid Mechanics. The first one concerns the study of a time-dependent constitutive law with unilateral constraints and memory term. The second one is related to a frictional contact problem for viscoelastic materials. For both problems we describe the physical setting, list the assumptions on the data and provide existence and uniqueness results.
Vibroacoustic Analysis in the Thermal Environment of PCLD Sandwich Beams with Frequency and Temperature Dependent Viscoelastic Cores
Introduction The impact of vibrations excited by incident sound fields has become a major concern today, due to its influence on the performance of systems and installations. Vibrations have the potential to cause considerable dynamic disturbances and instabilities, which can lead to significant structural and functional damage. Consequently, it is crucial to control vibration phenomena right from the system design phase. To solve the problem of vibration, it is sometimes possible to increase the damping level of the structure by incorporating a damping treatment. Objective The aim of this paper is to present a simplified numerical approach to study the vibro-acoustic responses of structures with PCLD “Passive Constrained Layer Damping” treatment in the thermal environment, taking into account the frequency and temperature dependence of the different viscoelastic behavior laws. Material and Methods The modal stability procedure MSP is based on the finite element method in order to discretize and formulate the equation of motion. The asymptotic numerical method “ANM” is applied to approximate the solution of complex eigenvalue problems and construct the modal basis. The variability of the frequency responses is evaluated by a Monte Carlo simulation (MCS) combined with MSP and ANM to evaluate the stochastic behavior of a sandwich beam with random properties. Results The comparison with the direct frequency responses (DFR) demonstrates that the results are highly satisfactory in terms of the validity of the present MSP approach. A comparative study of viscoelastic behavior models was carried out to evaluate their damping properties provided to the structure. The viscoelastic materials provide significant damping particularly for amplitudes corresponding to the high frequencies. This is in contrast to the responses obtained without the viscoelastic layer. Conclusion The obtained results show the importance of viscoelastic damping, which has a significant effect on the vibro-acoustic behavior, implying the improvement of the damping of the structure, especially for large frequencies and high temperatures.
Research on the Seismic Mitigation and Reinforcement Control Effect Based on the Development of Low-Frequency Viscoelastic Damping Materials
Viscoelastic dampers (VEDs) in seismic structures comprehensively enhance the dynamic performance of the structure by dissipating energy, providing additional stiffness and damping. The optimization analysis of dampers is the core link to ensure the safety, economy, and effectiveness of seismic design schemes. This work aims to develop low-frequency high-performance viscoelastic damping materials (VEMs) and verify the seismic control effect through three-dimensional solid engineering structure analysis. Four different damping systems of Acrylate Rubber (ACM) based viscoelastic materials were fabricated and performance characterization tests were conducted. The results indicate that all four damping modification systems can significantly improve the energy dissipation capacity of viscoelastic damping materials at low-frequency room temperature. The viscoelastic damping material with the best comprehensive performance has been selected and applied to the viscoelastic dampers of the three-dimensional shock-absorbing structure. Through the analysis of the structural vibration control effect, the universality of the vibration control effect of ACM-based viscoelastic materials under different seismic loads was further verified. It provides a feasible approach for the trans-scale research of “Material–Device–Structure” in viscoelastic damping technology.