Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
60,777 result(s) for "Vitamin C"
Sort by:
Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern?
Vitamin C is an essential nutrient that must be obtained through the diet in adequate amounts to prevent hypovitaminosis C, deficiency and its consequences—including the potentially fatal deficiency disease scurvy. Global vitamin C status and prevalence of deficiency has not previously been reported, despite vitamin C’s pleiotropic roles in both non-communicable and communicable disease. This review highlights the global literature on vitamin C status and the prevalence of hypovitaminosis C and deficiency. Related dietary intake is reported if assessed in the studies. Overall, the review illustrates the shortage of high quality epidemiological studies of vitamin C status in many countries, particularly low- and middle-income countries. The available evidence indicates that vitamin C hypovitaminosis and deficiency is common in low- and middle-income countries and not uncommon in high income settings. Further epidemiological studies are required to confirm these findings, to fully assess the extent of global vitamin C insufficiency, and to understand associations with a range of disease processes. Our findings suggest a need for interventions to prevent deficiency in a range of at risk groups and regions of the world.
Estimation of Vitamin C Intake Requirements Based on Body Weight: Implications for Obesity
Higher body weight is known to negatively impact plasma vitamin C status. However, despite this well-documented inverse association, recommendations on daily vitamin C intakes by health authorities worldwide do not include particular reference values for people of higher body weight. This suggests that people of higher body weight and people with obesity may be receiving insufficient vitamin C in spite of ingesting the amounts recommended by their health authorities. The current preliminary investigation sought to estimate how much additional vitamin C people with higher body weights would need to consume in order to attain a comparable vitamin C status to that of a lower weight person consuming an average Western vitamin C intake. Data from two published vitamin C dose-concentration studies were used to generate the relationship: a detailed pharmacokinetic study with seven healthy non-smoking men and a multiple depletion–repletion study with 68 healthy non-smoking men of varying body weights. Our estimates suggest that an additional intake of 10 mg vitamin C/day is required for every 10 kg increase in body weight to attain a comparable plasma concentration to a 60 kg individual with a vitamin C intake of ~110 mg/day, which is the daily intake recommended by the European Food Safety Authority (EFSA). Thus, individuals weighing e.g., 80 and 90 kg will need to consume ~130 and 140 mg vitamin C/day, respectively. People with obesity will likely need even higher vitamin C intakes. As poor vitamin C status is associated with increased risk of several chronic diseases including cardiovascular disease, these findings may have important public health implications. As such, dose-finding studies are required to determine optimal vitamin C intakes for overweight and obese people.
Factors Affecting Vitamin C Status and Prevalence of Deficiency: A Global Health Perspective
A recent review of global vitamin C status has indicated a high prevalence of deficiency, particularly in low- and middle-income countries, as well as in specific subgroups within high-income countries. Here, we provide a narrative review of potential factors influencing vitamin C status globally. The in vivo status of vitamin C is primarily affected by dietary intake and supplement use, with those who supplement having a higher mean status and a lower prevalence of deficiency. Dietary intake can be influenced by cultural aspects such as traditional cooking practices and staple foods, with many staple foods, such as grains, contributing negligible vitamin C to the diet. Environmental factors can also affect vitamin C intake and status; these include geographic region, season, and climate, as well as pollution, the latter partly due to enhanced oxidative stress. Demographic factors such as sex, age, and race are known to affect vitamin C status, as do socioeconomic factors such as deprivation, education and social class, and institutionalization. Various health aspects can affect vitamin C status; these include body weight, pregnancy and lactation, genetic variants, smoking, and disease states, including severe infections as well as various noncommunicable diseases such as cardiovascular disease and cancer. Some of these factors have changed over time; therefore, we also explore if vitamin C status has shown temporal changes. Overall, there are numerous factors that can affect vitamin C status to different extents in various regions of the world. Many of these factors are not taken into consideration during the setting of global dietary intake recommendations for vitamin C.
The Roles of Vitamin C in Skin Health
The primary function of the skin is to act as a barrier against insults from the environment, and its unique structure reflects this. The skin is composed of two layers: the epidermal outer layer is highly cellular and provides the barrier function, and the inner dermal layer ensures strength and elasticity and gives nutritional support to the epidermis. Normal skin contains high concentrations of vitamin C, which supports important and well-known functions, stimulating collagen synthesis and assisting in antioxidant protection against UV-induced photodamage. This knowledge is often used as a rationale for the addition of vitamin C to topical applications, but the efficacy of such treatment, as opposed to optimising dietary vitamin C intake, is poorly understood. This review discusses the potential roles for vitamin C in skin health and summarises the in vitro and in vivo research to date. We compare the efficacy of nutritional intake of vitamin C versus topical application, identify the areas where lack of evidence limits our understanding of the potential benefits of vitamin C on skin health, and suggest which skin properties are most likely to benefit from improved nutritional vitamin C intake.
Dimeric transport mechanism of human vitamin C transporter SVCT1
Vitamin C plays important roles as a cofactor in many enzymatic reactions and as an antioxidant against oxidative stress. As some mammals including humans cannot synthesize vitamin C de novo from glucose, its uptake from dietary sources is essential, and is mediated by the sodium-dependent vitamin C transporter 1 (SVCT1). Despite its physiological significance in maintaining vitamin C homeostasis, the structural basis of the substrate transport mechanism remained unclear. Here, we report the cryo-EM structures of human SVCT1 in different states at 2.5–3.5 Å resolutions. The binding manner of vitamin C together with two sodium ions reveals the counter ion-dependent substrate recognition mechanism. Furthermore, comparisons of the inward-open and occluded structures support a transport mechanism combining elevator and distinct rotational motions. Our results demonstrate the molecular mechanism of vitamin C transport with its underlying conformational cycle, potentially leading to future industrial and medical applications. Vitamin C is an essential nutrient for our daily life, but how it is transported into our bodies remained unclear. Here, authors revealed multiple structures of human vitamin C transporter, providing insights into its molecular mechanisms.
Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005–2016 NHANES
A well-functioning immune system is essential for human health and well-being. Micronutrients such as vitamins A, C, D, E, and zinc have several functions throughout the immune system, yet inadequate nutrient intakes are pervasive in the US population. A large body of research shows that nutrient inadequacies can impair immune function and weaken the immune response. Here, we present a new analysis of micronutrient usual intake estimates based on nationally representative data in 26,282 adults (>19 years) from the 2005–2016 National Health and Nutrition Examination Surveys (NHANES). Overall, the prevalence of inadequacy (% of population below estimated average requirement [EAR]) in four out of five key immune nutrients is substantial. Specifically, 45% of the U.S. population had a prevalence of inadequacy for vitamin A, 46% for vitamin C, 95% for vitamin D, 84% for vitamin E, and 15% for zinc. Dietary supplements can help address nutrient inadequacy for these immune-support nutrients, demonstrated by a lower prevalence of individuals below the EAR. Given the long-term presence and widening of nutrient gaps in the U.S.—specifically in critical nutrients that support immune health—public health measures should adopt guidelines to ensure an adequate intake of these micronutrients. Future research is needed to better understand the interactions and complexities of multiple nutrient shortfalls on immune health and assess and identify optimal levels of intake in at-risk populations.
Factors Affecting the Vitamin C Dose-Concentration Relationship: Implications for Global Vitamin C Dietary Recommendations
Vitamin C status is known to be associated with several demographic and lifestyle factors. These include gender, age, ethnicity, pregnancy/lactation, body weight, smoking status and dietary habits. In the present study, our aim was to investigate the National Health and Nutrition Examination Survey (NHANES) 2017–2018 datasets to assess the impact of these factors on vitamin C dose-concentration relationships to establish if there are higher requirements for vitamin C in certain subpopulations, and the possible extent of these additional requirements. The final cohort comprised 2828 non-supplementing adult males and females (aged 18–80+ years) with both vitamin C serum concentrations and dietary intake data available. The data were subsequently stratified by gender, age tertiles (≤36, 37–58, ≥59 years), ethnicity (non-Hispanic white, non-Hispanic black, and total Hispanic), socioeconomic tertiles (poverty income ratios: ≤1.35, 1.36–3.0, >3.0), weight tertiles (<72, 72–91, >91 kg), BMI tertiles (<26, 26–32, >32 kg/m2) and smoking status. Sigmoidal (four parameter logistic) curves with asymmetrical 95% confidence intervals were fitted to the dose-concentration data. We found that males required vitamin C intakes ~1.2-fold higher than females to reach ‘adequate’ serum vitamin C concentrations of 50 µmol/L. Males had both higher body weight and a higher prevalence of smoking than females. Smokers required vitamin C intakes ~2.0-fold higher than non-smokers to reach adequate vitamin C concentrations. Relative to adults in the lighter weight tertile, adults in the heavier weight tertile required ~2.0-fold higher dietary intakes of vitamin C to reach adequate serum concentrations. We did not observe any impact of ethnicity or socioeconomic status on the vitamin C dose-concentration relationship, and although no significant difference between younger and older adults was observed at vitamin C intakes > 75 mg/day, at intakes < 75 mg/day, older adults had an attenuated serum response to vitamin C intake. In conclusion, certain demographic and lifestyle factors, specifically gender, smoking and body weight, have a significant impact on vitamin C requirements. Overall, the data indicate that the general population should consume ~110 mg/day of vitamin C to attain adequate serum concentrations, smokers require ~165 mg/day relative to non-smokers, and heavier people (100+ kg) require ~155 mg/day to reach comparable vitamin C concentrations. These findings have important implications for global vitamin C dietary recommendations.
Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes
Background Vitamin C is an essential water-soluble nutrient which cannot be synthesised or stored by humans. It is a potent antioxidant with anti-inflammatory and immune-supportive roles. Previous research has indicated that vitamin C levels are depleted in critically ill patients. In this study we have assessed plasma vitamin C concentrations in critically ill patients relative to infection status (septic shock or non-septic) and level of inflammation (C-reactive protein concentrations). Vitamin C status was also assessed relative to daily enteral and parenteral intakes to determine if standard intensive care unit (ICU) nutritional support is adequate to meet the vitamin C needs of critically ill patients. Methods Forty-four critically ill patients (24 with septic shock, 17 non-septic, 3 uncategorised) were recruited from the Christchurch Hospital Intensive Care Unit. We measured concentrations of plasma vitamin C and a pro-inflammatory biomarker (C-reactive protein) daily over 4 days and calculated patients’ daily vitamin C intake from the enteral or total parenteral nutrition they received. We compared plasma vitamin C and C-reactive protein concentrations between septic shock and non-septic patients over 4 days using a mixed effects statistical model, and we compared the vitamin C status of the critically ill patients with known vitamin C bioavailability data using a four-parameter log-logistic response model. Results Overall, the critically ill patients exhibited hypovitaminosis C (i.e., < 23 μmol/L), with a mean plasma vitamin C concentration of 17.8 ± 8.7 μmol/L; of these, one-third had vitamin C deficiency (i.e., < 11 μmol/L). Patients with hypovitaminosis C had elevated inflammation (C-reactive protein levels; P  < 0.05). The patients with septic shock had lower vitamin C concentrations and higher C-reactive protein concentrations than the non-septic patients ( P  < 0.05). Nearly 40% of the septic shock patients were deficient in vitamin C, compared with 25% of the non-septic patients. These low vitamin C levels were apparent despite receiving recommended intakes via enteral and/or parenteral nutritional therapy (mean 125 mg/d). Conclusions Critically ill patients have low vitamin C concentrations despite receiving standard ICU nutrition. Septic shock patients have significantly depleted vitamin C levels compared with non-septic patients, likely resulting from increased metabolism due to the enhanced inflammatory response observed in septic shock.
The neuropsychiatric effects of vitamin C deficiency: a systematic review
Background Vitamin C deficiency may be more common than is generally assumed, and the association between vitamin C deficiency and adverse psychiatric effects has been known for centuries. This paper aims to systematically review the evidence base for the neuropsychiatric effects of vitamin C deficiency. Methods Relevant studies were identified via systematic literature review. Results Nine studies of vitamin C deficiency, including subjects both with and without the associated physical manifestations of scurvy, were included in this review. Vitamin C deficiency, including scurvy, has been linked to depression and cognitive impairment. No effect on affective or non-affective psychosis was identified. Conclusions Disparate measurement techniques for vitamin C, and differing definitions of vitamin C deficiency were apparent, complicating comparisons between studies. However, there is evidence suggesting that vitamin C deficiency is related to adverse mood and cognitive effects. The vitamin C blood levels associated with depression and cognitive impairment are higher than those implicated in clinical manifestations of scurvy. While laboratory testing for ascorbic acid can be practically difficult, these findings nonetheless suggest that mental health clinicians should be alerted to the possibility of vitamin C deficiency in patients with depression or cognitive impairment. Vitamin C replacement is inexpensive and easy to deliver, although as of yet there are no outcome studies investigating the neuropsychiatric impact of vitamin C replacement in those who are deficient.
Pilot trial of high-dose vitamin C in critically ill COVID-19 patients
BackgroundFew specific medications have been proven effective for the treatment of patients with severe coronavirus disease 2019 (COVID-19). Here, we tested whether high-dose vitamin C infusion was effective for severe COVID-19.MethodsThis randomized, controlled, clinical trial was performed at 3 hospitals in Hubei, China. Patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the ICU were randomly assigned in as 1:1 ratio to either the high-dose intravenous vitamin C (HDIVC) or the placebo. HDIVC group received 12 g of vitamin C/50 ml every 12 h for 7 days at a rate of 12 ml/hour, and the placebo group received bacteriostatic water for injection in the same way within 48 h of arrival to ICU. The primary outcome was invasive mechanical ventilation-free days in 28 days (IMVFD28). Secondary outcomes were 28-day mortality, organ failure (Sequential Organ Failure Assessment (SOFA) score), and inflammation progression (interleukin-6).ResultsOnly 56 critical COVID-19 patients were ultimately recruited due to the early control of the outbreak. There was no difference in IMVFD28 between two groups (26.0 [9.0–28.0] in HDIVC vs 22.0 [8.50–28.0] in control, p = 0.57). HDIVC failed to reduce 28-day mortality (P = 0.27). During the 7-day treatment period, patients in the HDIVC group had a steady rise in the PaO2/FiO2 (day 7: 229 vs. 151 mmHg, 95% CI 33 to 122, P = 0.01), which was not observed in the control group. IL-6 in the HDIVC group was lower than that in the control group (19.42 vs. 158.00; 95% CI -301.72 to -29.79; P = 0.04) on day 7.ConclusionThis pilot trial showed that HDIVC failed to improve IMVFD28, but might show a potential signal of benefit in oxygenation for critically ill patients with COVID-19 improving PaO2/FiO2 even though.