Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
745 result(s) for "Vitreous Body - metabolism"
Sort by:
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy
Aims/hypothesisThe pathophysiology of diabetic retinopathy is linked to hyperglycaemia and its effect on retinal microvascular tissues. The resulting endothelial injury changes the endothelial cell phenotype to acquire mesenchymal properties (i.e. endothelial–mesenchymal transition [EndMT]). Such changes can be regulated by epigenetic mechanisms, including long non-coding RNAs (lncRNAs). lncRNA H19 may influence EndMT through TGF-β. We investigated the role of H19 in regulating EndMT during diabetic retinopathy.MethodsH19 was overexpressed or silenced in human retinal endothelial cells exposed to various glucose levels. The cells were examined for H19, endothelial and mesenchymal markers. We then expanded the study to retinal tissues in a mouse model of diabetic retinopathy and also examined vitreous humour samples from individuals with proliferative diabetic retinopathy.ResultsExpression of H19 was downregulated in high glucose conditions (25 mmol/l). H19 overexpression prevented glucose-induced EndMT. Such changes appear to involve TGF-β through a Smad-independent mechanism. Diabetes caused downregulation of retinal H19. Using H19 knockout mice, we demonstrated similar EndMT in the retina. Examination of vitreous humour from individuals with proliferative diabetic retinopathy also reinforced the downregulation of H19 in diabetes.Conclusions/interpretationWe therefore concluded that H19 regulates EndMT in diabetic retinopathy through specific mechanisms.Data availabilityThe results from our previous microarray can be found online using the GEO accession number GSE122189.
Vitreous metabolomics profiling of proliferative diabetic retinopathy
Aims/hypothesisProliferative diabetic retinopathy (PDR) with retinal neovascularisation (NV) is a leading cause of vision loss. This study identified a set of metabolites that were altered in the vitreous humour of PDR patients compared with non-diabetic control participants. We corroborated changes in vitreous metabolites identified in prior studies and identified novel dysregulated metabolites that may lead to treatment strategies for PDR.MethodsWe analysed metabolites in vitreous samples from 43 PDR patients and 21 non-diabetic epiretinal membrane control patients from Japan (age 27–80 years) via ultra-high-performance liquid chromatography-mass spectrometry. We then investigated the association of a novel metabolite (creatine) with retinal NV in mouse oxygen-induced retinopathy (OIR). Creatine or vehicle was administered from postnatal day (P)12 to P16 (during induced NV) via oral gavage. P17 retinas were quantified for NV and vaso-obliteration.ResultsWe identified 158 metabolites in vitreous samples that were altered in PDR patients vs control participants. We corroborated increases in pyruvate, lactate, proline and allantoin in PDR, which were identified in prior studies. We also found changes in metabolites not previously identified, including creatine. In human vitreous humour, creatine levels were decreased in PDR patients compared with epiretinal membrane control participants (false-discovery rate <0.001). We validated that lower creatine levels were associated with vascular proliferation in mouse retina in the OIR model (p = 0.027) using retinal metabolomics. Oral creatine supplementation reduced NV compared with vehicle (P12 to P16) in OIR (p = 0.0024).Conclusions/interpretationThese results suggest that metabolites from vitreous humour may reflect changes in metabolism that can be used to find pathways influencing retinopathy. Creatine supplementation could be useful to suppress NV in PDR.
Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy
A product of the soluble epoxide hydrolase enzyme, 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP), is implicated in the pathogenesis of diabetic retinopathy; levels of 19,20-DHDP increase in the retinas of mice and humans with diabetes, and inhibition of its production can rescue vascular abnormalities in a mouse model of the disease. Rescuing diabetic retinas Untreated diabetes can cause vascular complications including diabetic retinopathy—a progressive loss of retinal vascular cells that causes vessel leakiness, retinal oedema and, ultimately, blindness. Ingrid Fleming and colleagues found that a bioactive lipid derived from docosahexaenoic acid (19,20-DHDP) is implicated in the pathogenesis of this vascular disease. They show that the levels of 19,20-DHDP increase in the retinas of diabetic mice and humans, and that inhibiting the production of this lipid can rescue vascular abnormalities in a mouse model of diabetic retinopathy. The authors suggest that the mechanism that underlies the effect of 19,20-DHDP is an alteration of the dynamics of vascular cell membranes, which affects cell–cell junctions. Diabetic retinopathy is an important cause of blindness in adults 1 , 2 , and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema 3 . Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization 4 , 5 . Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte–endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.
Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes
Abstarct Glaucoma is a chronic disease that shares many similarities with other neurodegenerative disorders of the central nervous system. This study was designed to evaluate the association between glaucoma and other neurodegenerative disorders by investigating glaucoma-associated protein changes in the retina and vitreous humour. The multiplexed Tandem Mass Tag based proteomics (TMT-MS3) was carried out on retinal tissue and vitreous humour fluid collected from glaucoma patients and age-matched controls followed by functional pathway and protein network interaction analysis. About 5000 proteins were quantified from retinal tissue and vitreous fluid of glaucoma and control eyes. Of the differentially regulated proteins, 122 were found linked with pathophysiology of Alzheimer’s disease (AD). Pathway analyses of differentially regulated proteins indicate defects in mitochondrial oxidative phosphorylation machinery. The classical complement pathway associated proteins were activated in the glaucoma samples suggesting an innate inflammatory response. The majority of common differentially regulated proteins in both tissues were members of functional protein networks associated brain changes in AD and other chronic degenerative conditions. Identification of previously reported and novel pathways in glaucoma that overlap with other CNS neurodegenerative disorders promises to provide renewed understanding of the aetiology and pathogenesis of age related neurodegenerative diseases.
Hyalocytes—guardians of the vitreoretinal interface
Originally discovered in the nineteenth century, hyalocytes are the resident macrophage cell population in the vitreous body. Despite this, a comprehensive understanding of their precise function and immunological significance has only recently emerged. In this article, we summarize recent in-depth investigations deciphering the critical role of hyalocytes in various aspects of vitreous physiology, such as the molecular biology and functions of hyalocytes during development, adult homeostasis, and disease. Hyalocytes are involved in fetal vitreous development, hyaloid vasculature regression, surveillance and metabolism of the vitreoretinal interface, synthesis and breakdown of vitreous components, and maintenance of vitreous transparency. While sharing certain resemblances with other myeloid cell populations such as retinal microglia, hyalocytes possess a distinct molecular signature and exhibit a gene expression profile tailored to the specific needs of their host tissue. In addition to inflammatory eye diseases such as uveitis, hyalocytes play important roles in conditions characterized by anomalous posterior vitreous detachment (PVD) and vitreoschisis. These can be hypercellular tractional vitreo-retinopathies, such as macular pucker, proliferative vitreo-retinopathy (PVR), and proliferative diabetic vitreo-retinopathy (PDVR), as well as paucicellular disorders such as vitreo-macular traction syndrome and macular holes. Notably, hyalocytes assume a significant role in the early pathophysiology of these disorders by promoting cell migration and proliferation, as well as subsequent membrane contraction, and vitreoretinal traction. Thus, early intervention targeting hyalocytes could potentially mitigate disease progression and prevent the development of proliferative vitreoretinal disorders altogether, by eliminating the involvement of vitreous and hyalocytes.
Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients
Macrophages are involved in low-grade inflammation in diabetes, and play pathogenic roles in proliferative diabetic retinopathy (PDR) by producing proinflammatory cytokines. T cells as well as other cells are also activated by proinflammatory cytokines, and infiltration into the vitreous of patients with PDR has been shown. In this study, we measured helper T (Th) cell-related cytokines in the vitreous of PDR patients to define the characteristics of Th-mediated immune responses associated with PDR. The study group consisted of 25 type 2 diabetic patients (25 eyes) with PDR. The control group consisted of 27 patients with epiretinal membrane (ERM), 26 patients with idiopathic macular hole (MH), and 26 patients with uveitis associated with sarcoidosis. Vitreous fluid was obtained at the beginning of vitrectomy, and centrifuging for cellular removals was not performed. Serum was also collected from PDR patients. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble sCD40L, and TNFα in the vitreous and serum samples were measured. Both percent detectable and levels of IL-4, IL-6, IL-17A, IL-21, IL-22, and TNFα in the vitreous were significantly higher than those in the serum in PDR patients. Vitreous levels of these cytokines and IL-31 were significantly higher in PDR than in ERM or MH patients. Vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα in PDR patients were also significantly higher than those of sarcoidosis patients. In PDR patients, vitreous IL-17A level correlated significantly with vitreous levels of IL-22 and IL-31, and especially with IL-4 and TNFα. Although it is unclear whether these cytokines play facilitative roles or inhibitory roles for the progression of PDR, the present study indicated that Th2- and Th17-related immune responses are involved in the pathogenesis of PDR.
Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD
Background Data comparing systemic exposure and systemic vascular endothelial growth factor (VEGF) suppression of ranibizumab, bevacizumab and aflibercept following intravitreal injection are lacking. Methods Fifty-six patients with wet age-related macular degeneration received intravitreal ranibizumab (0.5 mg), bevacizumab (1.25 mg), or aflibercept (2.0 mg). Serum pharmacokinetics and plasma free VEGF were evaluated after the first and third injections. Results Following the first dose, systemic exposure to aflibercept was 5-, 37-, and 9-fold higher than ranibizumab, whereas, bevacizumab was 9-, 310-, and 35-fold higher than ranibizumab, based on geometric mean ratio of peak and trough concentrations and area under the curve, respectively. The third dose showed accumulation of bevacizumab and aflibercept but not ranibizumab. Aflibercept substantially suppressed plasma free VEGF, with mean levels below lower limit of quantitation (10 pg/mL) as early as 3 h postdose until ≥7 days postdose. Mean free (unbound) VEGF levels with ranibizumab were largely unchanged, with mean trough level of 14.4 pg/mL compared with baseline of 17 pg/mL. Conclusions There are notable differences in systemic pharmacokinetics and pharmacodynamics among anti-VEGF treatments after intravitreal administration. All three agents rapidly moved into the bloodstream, but ranibizumab very quickly cleared, whereas bevacizumab and aflibercept demonstrated greater systemic exposure and produced a marked reduction in plasma free VEGF. Trial registration number NCT02118831.
Vitreous MMP-2, TIMP-1, and TIMP-2 Levels in Vitreoretinal Pathologies: A Prospective Analysis of 181 Eyes
Little is known about the role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the vitreous and retinal environments. This study aimed to assess the vitreous levels of members of the MMP and TIMP families in patients who were scheduled to undergo pars plana vitrectomy (PPV). Prospectively, all patients scheduled for PPV and who met the inclusion criteria were invited. The included retinal conditions were advanced proliferative diabetic retinopathy (PDR), rhegmatogenous retinal detachment (RRD), vitreomacular interface diseases, endophthalmitis, and dropped crystalline lenses. Undiluted vitreous samples were obtained during the early stage of PPV. The levels of TIMP1, TIMP2, MMP2, and TIMP2/MMP2 ratio were measured using enzyme-linked immunosorbent assay (ELISA). A total of 181 eyes were included in this study. The levels of TIMP2 and the TIMP2/MMP2 ratio were significantly higher in the advanced PDR group than in the other groups. Significantly, TIMP2 and TIMP2/MMP2 levels were highest in the endophthalmitis group, whereas MMP2 levels were highest in the dropped crystalline lenses group. The presence of diabetes mellitus and of preoperative glaucoma were significantly associated with higher TIMP1 levels. In RRD cases alone, all biomarkers were significantly elevated with higher PVR grades. Furthermore, TIMP1 and MMP2 correlated with macular detachment. A relationship between the vitreous levels of MMPs and TIMPs and the pathogenesis of vitreoretinal pathology may exist. Further studies and trials are recommended to explore the potential use of MMPs and TIMPs in the diagnosis, prognosis, and treatment of eye diseases.
Cytoprotective Compounds in the Primate Eye: Baseline Metabolomic Profiles of Macaca fascicularis Ocular Tissues
Nonhuman primates are often considered as the best animal models for studying human ophthalmological diseases, but the metabolomic composition of primate ocular tissues remains largely unknown. In this work, we performed NMR-based quantitative metabolomic analysis of crab-eating macaque (Macaca fascicularis) serum, aqueous (AH) and vitreous (VH) humors, and lens. We determined the concentrations of a total 94 compounds in these tissues, 13 of which play important cytoprotective roles. The obtained metabolomic profiles represent the baseline metabolomes of blood and eye tissues characteristic of young healthy M. fascicularis adults. The obtained data indicate that antioxidants ascorbate and ergothioneine are actively pumped from blood into AH with the use of specific transporters, and there is an active transport against the concentration gradient of amino acids from AH into the lens. The comparison of metabolomic profiles of M. fascicularis and human ocular tissues shows a very high degree of similarity at the qualitative level, while the quantitative compositions of cytoprotective compounds (antioxidants, osmolytes, and ultraviolet filters) in M. fascicularis and human lenses differ. Despite these differences, from the metabolomic viewpoint, M. fascicularis are much better models of human diseases than rodents, which are often used in studies of eye disorders.