Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
106,421 result(s) for "Volatile Organic Compounds"
Sort by:
A large source of low-volatility secondary organic aerosol
The link between biogenic volatile organic compounds in the atmosphere and their conversion to aerosol particles is unclear, but a direct reaction pathway is now described by which volatile organic compounds lead to low-volatility vapours that can then condense onto aerosol surfaces, producing secondary organic aerosol. From forest emission to aerosol Forests emit large quantities of volatile organic compounds to the atmosphere. The condensable oxidation products of volatile organic compounds emitted by forests can form secondary organic aerosols or SOAs that can affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. But our understanding of the link between biogenic volatile organic compounds and their conversion to aerosol particles remains limited. This study reveals that a direct reaction pathway can lead from volatile organic compounds to low-volatility vapours that can then condense onto aerosol surfaces producing secondary organic aerosol and can significantly enhance the formation and growth of aerosol particles over forested regions. Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol 1 , 2 , which is known to affect the Earth’s radiation balance by scattering solar radiation and by acting as cloud condensation nuclei 3 . The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours 4 , 5 , 6 , but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies 2 . We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere–aerosol–climate feedback mechanisms 6 , 7 , 8 , and the air quality and climate effects of biogenic emissions generally.
Prediction of breast cancer risk with volatile biomarkers in breath
BackgroundHuman breath contains volatile organic compounds (VOCs) that are biomarkers of breast cancer. We investigated the positive and negative predictive values (PPV and NPV) of breath VOC biomarkers as indicators of breast cancer risk.MethodsWe employed ultra-clean breath collection balloons to collect breath samples from 54 women with biopsy-proven breast cancer and 124 cancer-free controls. Breath VOCs were analyzed with gas chromatography (GC) combined with either mass spectrometry (GC MS) or surface acoustic wave detection (GC SAW). Chromatograms were randomly assigned to a training set or a validation set. Monte Carlo analysis identified significant breath VOC biomarkers of breast cancer in the training set, and these biomarkers were incorporated into a multivariate algorithm to predict disease in the validation set. In the unsplit dataset, the predictive algorithms generated discriminant function (DF) values that varied with sensitivity, specificity, PPV and NPV.ResultsUsing GC MS, test accuracy = 90% (area under curve of receiver operating characteristic in unsplit dataset) and cross-validated accuracy = 77%. Using GC SAW, test accuracy = 86% and cross-validated accuracy = 74%. With both assays, a low DF value was associated with a low risk of breast cancer (NPV > 99.9%). A high DF value was associated with a high risk of breast cancer and PPV rising to 100%.ConclusionAnalysis of breath VOC samples collected with ultra-clean balloons detected biomarkers that accurately predicted risk of breast cancer.
Volatile chemical products emerging as largest petrochemical source of urban organic emissions
Transport-derived emissions of volatile organic compounds (VOCs) have decreased owing to stricter controls on air pollution. This means that the relative importance of chemicals in pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products has increased. McDonald et al. show that these volatile chemical products now contribute fully one-half of emitted VOCs in 33 industrialized cities (see the Perspective by Lewis). Thus, the focus of efforts to mitigate ozone formation and toxic chemical burdens need to be adjusted. Science , this issue p. 760 ; see also p. 744 Chemical products contribute as much organic air pollution as transportation emissions in many cities. A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.
Volatile chemical product emissions enhance ozone and modulate urban chemistry
Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg · d−1 · km−2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.
Biosynthesis, function and metabolic engineering of plant volatile organic compounds
Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop–pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.
On-Site Detection of Volatile Organic Compounds (VOCs)
Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research.
Epichloë Endophyte Enhanced Insect Resistance of Host Grass Leymus Chinensis by Affecting Volatile Organic Compound Emissions
In plant-herbivore interactions, plant volatile organic compounds (VOCs) play an important role in anti-herbivore defense. Grasses and Epichloë endophytes often form defensive mutualistic symbioses. Most Epichloë species produce alkaloids to protect hosts from herbivores, but there is no strong evidence that endophytes can affect the insect resistance of their hosts by altering VOC emissions. In this study, a native dominant grass, sheepgrass (Leymus chinensis), and its herbivore, oriental migratory locust (Locusta migratoria), were used as experimental materials. We studied the effect of endophyte-associated VOC emissions on the insect resistance of L. chinensis. The results showed that endophyte infection enhanced insect resistance of the host, and locusts preferred the odor of endophyte-free (EF) leaves to that of endophyte-infected (EI) leaves. We determined the VOC profile of L. chinensis using gas chromatography–mass spectrometry (GC–MS), and found that endophyte infection decreased the pentadecane (an alkane) emission from uneaten plants, and increased the nonanal (an aldehyde) emission from eaten plants. The olfactory response experiment showed that locusts were attracted by high concentration of pentadecane, while repelled by high concentration of nonanal, indicating that Epichloë endophytes may increase locust resistance of L. chinensis by decreasing pentadecane while increasing nonanal emission. Our results suggest that endophytes can induce VOC-mediated defense in hosts in addition to producing alkaloids, contributing to a better understanding the endophyte-plant-herbivore interactions.
Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments
The indoor built environment plays a critical role in our overall well-being because of both the amount of time we spend indoors (~90%) and the ability of buildings to positively or negatively influence our health. The advent of sustainable design or green building strategies reinvigorated questions regarding the specific factors in buildings that lead to optimized conditions for health and productivity. We simulated indoor environmental quality (IEQ) conditions in \"Green\" and \"Conventional\" buildings and evaluated the impacts on an objective measure of human performance: higher-order cognitive function. Twenty-four participants spent 6 full work days (0900-1700 hours) in an environmentally controlled office space, blinded to test conditions. On different days, they were exposed to IEQ conditions representative of Conventional [high concentrations of volatile organic compounds (VOCs)] and Green (low concentrations of VOCs) office buildings in the United States. Additional conditions simulated a Green building with a high outdoor air ventilation rate (labeled Green+) and artificially elevated carbon dioxide (CO2) levels independent of ventilation. On average, cognitive scores were 61% higher on the Green building day and 101% higher on the two Green+ building days than on the Conventional building day (p < 0.0001). VOCs and CO2 were independently associated with cognitive scores. Cognitive function scores were significantly better under Green+ building conditions than in the Conventional building conditions for all nine functional domains. These findings have wide-ranging implications because this study was designed to reflect conditions that are commonly encountered every day in many indoor environments. Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. 2016. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect 124:805-812; http://dx.doi.org/10.1289/ehp.1510037.
Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review
The aim of this research work is to analyze the chemistry and diversity of forest VOCs (volatile organic compounds) and to outline their evidence-based effects on health. This research work was designed as a narrative overview of the scientific literature. Inhaling forest VOCs like limonene and pinene can result in useful antioxidant and anti-inflammatory effects on the airways, and the pharmacological activity of some terpenes absorbed through inhalation may be also beneficial to promote brain functions by decreasing mental fatigue, inducing relaxation, and improving cognitive performance and mood. The tree composition can markedly influence the concentration of specific VOCs in the forest air, which also exhibits cyclic diurnal variations. Moreover, beneficial psychological and physiological effects of visiting a forest cannot be solely attributed to VOC inhalation but are due to a global and integrated stimulation of the five senses, induced by all specific characteristics of the natural environment, with the visual component probably playing a fundamental role in the overall effect. Globally, these findings can have useful implications for individual wellbeing, public health, and landscape design. Further clinical and environmental studies are advised, since the majority of the existing evidence is derived from laboratory findings.
Sniffer dogs can identify lung cancer patients from breath and urine samples
Background Lung cancer is the most common oncological cause of death in the Western world. Early diagnosis is critical for successful treatment. However, no effective screening methods exist. A promising approach could be the use of volatile organic compounds as diagnostic biomarkers. To date there are several studies, in which dogs were trained to discriminate cancer samples from controls. In this study we evaluated the abilities of specifically trained dogs to distinguish samples derived from lung cancer patients of various tumor stages from matched healthy controls. Methods This single center, double-blind clinical trial was approved by the local ethics committee, project no FF20/2016. The dog was conditioned with urine and breath samples of 36 cancer patients and 150 controls; afterwards, further 246 patients were included: 41 lung cancer patients comprising all stages and 205 healthy controls. From each patient two breath and urine samples were collected and shock frozen. Only samples from new subjects were presented to the dog during study phase randomized, double-blinded. This resulted in a specific conditioned reaction pointing to the cancer sample. Results Using a combination of urine and breath samples, the dog correctly predicted 40 out of 41 cancer samples, corresponding to an overall detection rate of cancer samples of 97.6% (95% CI [87.1, 99.9%]). Using urine samples only the dog achieved a detection rate of 87.8% (95% CI [73.8, 95.9%]). With breath samples, the dog correctly identified cancer in 32 of 41 samples, resulting in a detection rate of 78% (95% CI [62.4, 89.4%]). Conclusions It is known from current literature that breath and urine samples carry VOCs pointing to cancer growth. We conclude that olfactory detection of lung cancer by specifically trained dogs is highly suggestive to be a simple and non-invasive tool to detect lung cancer. To translate this approach into practice further target compounds need to be identified.