Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
15
result(s) for
"Volatolomics"
Sort by:
Volatolomics in healthcare and its advanced detection technology
by
Zhang, Guangjian
,
Hu, Wenwen
,
Jian, Yingying
in
Atomic/Molecular Structure and Spectra
,
Biomedicine
,
Biotechnology
2022
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Journal Article
Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages
2023
Food quality control is an important area to address, as it directly impacts the health of the whole population. To evaluate the food authenticity and quality, the organoleptic feature of the food aroma is very important, such that the composition of volatile organic compounds (VOC) is unique in each aroma, providing a basis to predict the food quality. Different types of analytical approaches have been used to assess the VOC biomarkers and other parameters in the food. The conventional approaches are based on targeted analyses using chromatography and spectroscopies coupled with chemometrics, which are highly sensitive, selective, and accurate to predict food authenticity, ageing, and geographical origin. However, these methods require passive sampling, are expensive, time-consuming, and lack real-time measurements. Alternately, gas sensor-based devices, such as the electronic nose (e-nose), bring a potential solution for the existing limitations of conventional methods, offering a real-time and cheaper point-of-care analysis of food quality assessment. Currently, research advancement in this field involves mainly metal oxide semiconductor-based chemiresistive gas sensors, which are highly sensitive, partially selective, have a short response time, and utilize diverse pattern recognition methods for the classification and identification of biomarkers. Further research interests are emerging in the use of organic nanomaterials in e-noses, which are cheaper and operable at room temperature.
Journal Article
Analysis of Volatiles in Food Products
2021
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. The four main steps can be distinguished in the evaluation of the volatiles in the food matrix as follows: (1) isolation and concentration; (2) separation; (3) identification; and (4) sensory characterization. The most commonly used techniques to separate a fraction of volatiles from non-volatiles are solid-phase micro-(SPME) and stir bar sorptive extractions (SBSE). However, to study the active components of food aroma by gas chromatography with olfactometry detector (GC-O), solvent-assisted flavor evaporation (SAFE) is used. The volatiles are mostly separated on GC systems (GC or comprehensive two-dimensional GCxGC) with the support of mass spectrometry (MS, MS/MS, ToF–MS) for chemical compound identification. Besides omics techniques, the promising part could be a study of aroma using electronic nose. Therefore, the main assumptions of volatolomics are here described.
Journal Article
Comparison of Targeted and Untargeted Approaches in Breath Analysis for the Discrimination of Lung Cancer from Benign Pulmonary Diseases and Healthy Persons
by
Amoutzias, Grigoris D.
,
Hadjichristodoulou, Christos
,
Gourgoulianis, Konstantinos
in
Biomarkers
,
breath analysis
,
cancer biomarkers
2021
The aim of the present study was to compare the efficiency of targeted and untargeted breath analysis in the discrimination of lung cancer (Ca+) patients from healthy people (HC) and patients with benign pulmonary diseases (Ca−). Exhaled breath samples from 49 Ca+ patients, 36 Ca− patients and 52 healthy controls (HC) were analyzed by an SPME–GC–MS method. Untargeted treatment of the acquired data was performed with the use of the web-based platform XCMS Online combined with manual reprocessing of raw chromatographic data. Machine learning methods were applied to estimate the efficiency of breath analysis in the classification of the participants. Results: Untargeted analysis revealed 29 informative VOCs, from which 17 were identified by mass spectra and retention time/retention index evaluation. The untargeted analysis yielded slightly better results in discriminating Ca+ patients from HC (accuracy: 91.0%, AUC: 0.96 and accuracy 89.1%, AUC: 0.97 for untargeted and targeted analysis, respectively) but significantly improved the efficiency of discrimination between Ca+ and Ca− patients, increasing the accuracy of the classification from 52.9 to 75.3% and the AUC from 0.55 to 0.82. Conclusions: The untargeted breath analysis through the inclusion and utilization of newly identified compounds that were not considered in targeted analysis allowed the discrimination of the Ca+ from Ca− patients, which was not achieved by the targeted approach.
Journal Article
Integrating untargeted volatile metabolomics and molecular evidence supporting chemotaxonomy in Kaempferia species for more effective identification
by
Wongsuwan, Pornpimon
,
Phokham, Boonmee
,
Rattanakrajang, Pantamith
in
631/181
,
631/181/2480
,
631/181/757
2025
Kaempferia
L., a medicinal genus of Zingiberaceae family, is widely distributed from India to Southeast Asia and is rich in terpenoids, flavonoids, phenolics, and volatile oils. Recently, it has gained attention for its diverse biological activities, including antioxidant, anticancer, analgesic, anti-inflammatory, and anti-tuberculosis effects. However, several
Kaempferia
species complexes exhibit similar morphological characteristics, making identification and classification challenging. This study integrates morphology, molecular phylogeny, and phytochemistry to identify and distinguish
Kaempferia
species. Phylogenetic relationships were reconstructed using four DNA barcoding markers: one nuclear region (ITS) and three chloroplast markers (
mat
K,
rbc
L, and
psb
A-
trn
H). Untargeted metabolomic analysis using SPME-GC-MS, combined with multivariate statistical analyses, was employed to resolve species relationships and display volatile profiles among 15
Kaempferia
species from two subgenera. A total of 217 metabolites were identified by the SPME-GC-MS technique. Variable Importance in Projection (VIP ≥ 1.5) analysis indicated 30 key metabolites, primarily sesquiterpenes, as specific chemotaxonomic markers. This study provides a comprehensive chemical profile of
Kaempferia
species and highlights metabolomic differences among them. Our findings emphasize the importance of integrating morphological, molecular, and phytochemical approaches for precise identification of closely related species, particularly within
Kaempferia
. This chemotaxonomic research also provides further applications for species authentication in pharmaceuticals and medicine.
Journal Article
How to Build Live-Cell Sensor Microdevices
2023
There is a lot of discussion on how viruses (such as influenza and SARS-CoV-2) are transmitted in air, potentially from aerosols and respiratory droplets, and thus it is important to monitor the environment for the presence of an active pathogen. Currently, the presence of viruses is being determined using primarily nucleic acid-based detection methods, such as reverse transcription- polymerase chain reaction (RT-PCR) tests. Antigen tests have also been developed for this purpose. However, most nucleic acid and antigen methods fail to discriminate between a viable and a non-viable virus. Therefore, we present an alternative, innovative, and disruptive approach involving a live-cell sensor microdevice that captures the viruses (and bacteria) from the air, becomes infected by them, and emits signals for an early warning of the presence of pathogens. This perspective outlines the processes and components required for living sensors to monitor the presence of pathogens in built environments and highlights the opportunity to use immune sentinels in the cells of normal human skin to produce monitors for indoor air pollutants.
Journal Article
Effect of enzyme hydrolysis on the functionality, protein quality, and flavour profile of lentil and chickpea protein isolates
2024
The overarching goal of this research was to investigate the effect of trypsin hydrolysis on the functional properties, protein quality, and flavour of chickpea and lentil protein isolates (CPI and LPI, respectively) at varying levels of hydrolysis (5%, 10%, 15%, and 20%). The protein content remained in the range of ~ 69-74% and ~ 80-83%, and lipid was increased from 2.1% to 0.5% to ~ 17% and ~ 2% for CPI and LPI, respectively. The surface charge and hydrophobicity were generally enhanced while changes to surface and interfacial tension varied greatly. The solubility of CPI and LPI increased by 10 and 30 times, respectively. The oil holding capacity also improved from ~ 1 to ~ 1.5–2.6 g/g. Most hydrolysates maintained emulsion stability at pH 7.8, whereas decreases were observed at pH 4.5. Modifications to water holding capacity and foaming properties varied between pulses with CPI having reductions in the attributes while those for LPI were generally positive. However, the LPI protein quality decreased (from 55 to 32%), while it improved for CPI (from 55 to 60%), with the limiting amino acid for both being tryptophan. Flavour compounds including aldehydes, alcohols and ketones were present before and post hydrolysis. Based on the findings, the present pulse hydrolysates could be applied into liquid-based formulations and processed meats for their enhanced solubility and fat retention, while LPI and CPI could also find use as a foaming agent or to improve amino acid nutrition, respectively.
Journal Article
Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages
by
Bajoul Kakahi, F.
,
Delvigne, Frank
,
Fifani, Barbara
in
Acid production
,
Acids
,
alcoholic fermentation
2019
Production of Cambodian rice wine involves complex microbial consortia. Indeed, previous studies focused on traditional microbial starters used for this product revealed that three microbial strains with complementary metabolic activities are required for an effective fermentation, i.e., filamentous fungi (Rhizopus oryzae), yeast (Saccharomyces cerevisiae), and lactic acid bacteria (Lactobacillus plantarum). Modulating the ratio between these three key players led to significant differences, not only in terms of ethanol and organic acid production, but also on the profile of volatile compounds, in comparison with natural communities. However, we observed that using an equal ratio of spores/cells of the three microbial strains during inoculation led to flavor profile and ethanol yield close to that obtained through the use of natural communities. Compartmentalization of metabolic tasks through the use of a biofilm cultivation device allows further improvement of the whole fermentation process, notably by increasing the amount of key components of the aroma profile of the fermented beverage (i.e., mainly phenylethyl alcohol, isobutyl alcohol, isoamyl alcohol, and 2-methyl-butanol) and reducing the amount of off-flavor compounds. This study is a step forward in our understanding of interkingdom microbial interactions with strong application potential in food biotechnology.
Journal Article
Comparison of Untargeted and Markers Analysis of Volatile Organic Compounds with SIFT-MS and SPME-GC-MS to Assess Tea Traceability
2024
Tea is one of the most consumed beverages in the world and presents a great aromatic diversity depending on the origin of the production and the transformation process. Volatile organic compounds (VOCs) greatly contribute to the sensory perception of tea and are excellent markers for traceability and quality. In this work, we analyzed the volatile organic compounds (VOCs) emitted by twenty-six perfectly traced samples of tea with two analytical techniques and two data treatment strategies. First, we performed headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) as the most widely used reference method for sanitary and quality controls of food. Next, we analyzed the samples with selected-ion flow-tube mass spectrometry (SIFT-MS), an emerging method for direct analysis of food products and aroma. We compared the performances of both techniques to trace the origin and the transformation processes. We selected the forty-eight most relevant markers with HS-SPME-GC-MS and evaluated their concentrations with a flame ionization detector (FID) on the same instrument. This set of markers permitted separation of the origins of samples but did not allow the samples to be differentiated based on the color. The same set of markers was measured with SIFT-MS instrument without success for either origin separation or color differentiation. Finally, a post-processing treatment of raw data signals with an untargeted approach was applied to the GC-MS and SIFT-MS dataset. This strategy allowed a good discrimination of origin and color with both instruments. Advantages and drawbacks of volatile profiles with both instruments were discussed for the traceability and quality assessment of food.
Journal Article
Integrated Metabolomics and Volatolomics for Comparative Evaluation of Fermented Soy Products
2021
Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography–mass spectrometry), GC-MS (gas chromatography–mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.
Journal Article