Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,238
result(s) for
"Volcanic hazards"
Sort by:
Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes
by
Costa, Antonio
,
Macedonio, Giovanni
,
Sulpizio, Roberto
in
704/2151/213
,
704/2151/598
,
Activitat volcànica
2016
Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.
Journal Article
The diversity of volcanic hazard maps around the world: insights from map makers
by
Clive, Mary Anne Thompson
,
Wright, Heather
,
Steinke, Bastian
in
Cartography
,
Communication
,
Data collection
2023
The IAVCEI Working Group on Hazard Mapping has been active since 2014 and has facilitated several activities to enable sharing of experiences of how volcanic hazard maps are developed and used around the world. One key activity was a global survey of 90 map makers and practitioners to collect data about official, published volcanic hazard maps and how they were developed. The survey asked questions about map content, design, and input data, as well as about the map development process and key lessons learned. Here we present the results of this global survey, which are then used to quantitatively describe and summarise current practices in volcanic hazard map development.
We received entries related to 89 volcanic hazard maps (78% long-term/background maps and 22% short-term/crisis hazard maps), covering a total of 80 volcanoes across 28 countries. Although most maps captured in the survey are volcano-scale maps of stratovolcanoes that show similar types of content, such as primary hazard footprints or zones, they vary greatly in input data, communication style, format, appearance, scale, content, and visual design. This diversity stems from a range of factors, including differences in map purpose, the methodology used, the level of understanding of past eruptive history, the prevailing scientific and cartographic practice at the time, the state of volcanic activity, and variations in culture, national map standards and legal requirements.
Experiences and lessons shared by our respondents can be divided into six main themes: map design considerations; the process of map development; map audience and map user needs; hazard assessment approach; map availability and accessibility; and external (e.g., political) influences. Insights shared included the importance of: visual design elements, map testing and evaluation, working with stakeholders and end users to improve a map’s efficacy and relevance, and considering possible unanticipated uses of hazard maps. These free-form text insights (i.e., responses to open-ended questions) from map makers and practitioners familiar with the maps lend depth and clarity to our results. They provide a rich complement to our more quantitative analysis of design elements and of approaches used to determine and delineate map zones.
Results from our global survey of hazard map makers and practitioners, together with insights from other key initiatives of the Working Group on Hazard Mapping such as the Volcanic Hazard Maps Database (VHMD;
https://volcanichazardmaps.org/
), provide a snapshot of the wide variety of volcanic hazard maps generated over the past decades, and improve our understanding of the diversity across volcanic hazard mapping practices. These initiatives represent important steps towards fulfilling the aims of the Working Group, namely, to construct a framework for a classification scheme for volcanic hazard maps and to promote harmonized terminology, as well as to identify and categorise good practices and considerations for volcanic hazard mapping.
Journal Article
MatHaz: a Matlab code to assist with probabilistic spatio-temporal volcanic hazard assessment in distributed volcanic fields
by
Becerril, Laura
,
Bertin, Lizette J.
,
Cronin, Shane J.
in
Density currents
,
Earth and Environmental Science
,
Earth Sciences
2019
This paper introduces an open source computer code to perform an integrated probabilistic spatio-temporal volcanic hazard assessment in distributed volcanic fields. The program, named MatHaz, is a set of Matlab scripts that follows a sequential methodology. After the user has provided a set of input files, this tool first estimates the spatial probability of future volcanic vents, then the temporal probability of future volcanic events, and finally models up to five volcanic phenomena (pyroclastic density currents, ballistic projectiles, lava flows, lahars, and tephra fallout) following a probabilistic approach. These results can be combined and depicted as an integrated quantitative (and/or qualitative) volcanic hazard map, with weightings of hazard factors chosen by the user. We illustrate the use of this tool by applying it to the Carrán-Los Venados Volcanic Field in southern Chile. The open-source, replicable, and user-friendly nature of the code allows its application to any volcanic region of the world, regardless of its extent, type, and amount of volcano-structural data.
Journal Article
Training in crisis communication and volcanic eruption forecasting: design and evaluation of an authentic role-play simulation
2015
We present an interactive, immersive, authentic role-play simulation designed to teach tertiary geoscience students in New Zealand to forecast and mitigate a volcanic crisis. Half of the participating group (i.e., the Geoscience Team) focuses on interpreting real volcano monitoring data (e.g., seismographs, gas output etc.) while the other half of the group (i.e., the Emergency Management Team) forecasts and manages likely impacts, and communicates emergency response decisions and advice to local communities. These authentic learning experiences were aimed at enhancing upper-year undergraduate students’ transferable and geologic reasoning skills. An important goal of the simulation was specifically to improve students’ science communication through interdisciplinary team discussions, jointly prepared, and delivered media releases, and real-time, high-pressure, press conferences.
By playing roles, students experienced the specific responsibilities of a professional within authentic organisational structures. A qualitative, design-based educational research study was carried out to assess the overall student experience and self-reported learning of skills. A pilot and four subsequent iterations were investigated.
Results from this study indicate that students found these role-plays to be a highly challenging and engaging learning experience and reported improved skills. Data from classroom observations and interviews indicate that the students valued the authenticity and challenging nature of the role-play although personal experiences and team dynamics (within, and between the teams) varied depending on the students’ background, preparedness, and personality.
During early iterations, observation and interviews from students and instructors indicate that some of the goals of the simulation were not fully achieved due to: A) lack of preparedness, B) insufficient time to respond appropriately, C) appropriateness of roles and team structure, and D) poor communication skills. Small modifications to the design of Iterations 3 and 4 showed an overall improvement in the students’ skills and goals being reached.
A communication skills instrument (SPCC) was used to measure self-reported pre- and post- communication competence in the last two iterations. Results showed that this instrument recorded positive shifts in all categories of self-perceived abilities, the largest shifts seen in students who participated in press conferences. Future research will be aimed at adapting this curricula to new volcanic and earthquake scenarios.
Journal Article
The eruption in Fagradalsfjall (2021, Iceland): how the operational monitoring and the volcanic hazard assessment contributed to its safe access
2023
After more than a year of unrest, a small effusive eruption commenced in Fagradalsfjall, Iceland, on 19 March 2021. The eruption lasted six months. The first six weeks were characterized by multiple fissure openings, and the remainder was dominated by effusive activity from a single crater. During the eruption, lava and low-level gases propagated over the complex terrain: a hyaloclastite massif with mountain peaks up to about 350 m asl with valleys in between. The area is uninhabited, but easily accessible at about 30 km distance from Reykjavík. While the eruption was ongoing, more than 356,000 tourists visited the eruptive site. To maintain low risk access to the area, it was critical to monitor the eruption (including opening of new fissures) in real-time, forecast the transport of gas and lava flow emplacement, and assess the evolving hazards. In addition to data accessibility and interpretation, managing this volcanic crisis was possible thanks to strong collaboration between the scientific institutions and civil protection agencies. The eruption presented an opportunity to tune, test and validate a variety of numerical models for hazard assessment as well as to refine and improve the delivery of information to the general public, communities living near the eruption site and decision makers. The monitoring team worked long hours during both the pre- and syn-eruptive phases for identifying low risk access areas to the eruption site and to provide a regular flow of information. This paper reviews the eruption and its associated hazards. It also provides an overview of the monitoring setup, the adopted numerical tools and communication materials disseminated to the general public regarding current exclusion zones, hazards and possible future eruptive scenarios.
Journal Article
Bayesian event tree for long-term volcanic hazard assessment: Application to Teide-Pico Viejo stratovolcanoes, Tenerife, Canary Islands
2010
In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide‐Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk‐based decision‐making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide‐Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree‐shaped Bayesian network with possible eruptive scenarios following the case of Teide‐Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each scenario. (3) Apply the model to Teide‐Pico Viejo stratovolcanoes. Finally, we compare the results with those from the Elicitation method applied before, as well as previous Bayesian event tree structures developed for other volcanoes.
Journal Article
Tsunami Runup and Inundation in Tonga from the January 2022 Eruption of Hunga Volcano
by
Latu’ila, Folauhola Helina
,
Fa’anunu, Ofa
,
Lynett, Patrick
in
Best practice
,
Coastal zone
,
Communication
2023
On January 15th, 2022, at approximately 4:47 pm local time (0347 UTC), several weeks of heightened activity at the Hunga volcano 65 km northwest of Tongatapu, culminated in an 11-h long violent eruption which generated a significant near-field tsunami. Although the Kingdom of Tonga lies astride a large and tsunamigenic subduction zone, it has relatively few records of significant tsunami. Assessment activities took place both remotely and locally. Between March and June 2022, a field team quantified tsunami runup and inundation on the main populated islands Tongatapu and Eua, along with several smaller islands to the north, including the Ha’apai Group. Peak tsunami heights were ~ 19 m in western Tongatapu, ~ 20 m on south-eastern Nomuka Iki island and ~ 20 m on southern Tofua, located ~ 65 km S and E and 90 km N from Hunga volcano, respectively. In western Tongatapu, the largest tsunami surge overtopped a 13–15 m-high ridge along the narrow Hihifo peninsula in several locations. Analysis of tide gauge records from Nukualofa (which lag western Tongatapu arrivals by ~ 18–20 min), suggest that initial tsunami surges were generated prior to the largest volcanic explosions at ~ 0415 UTC. Further waves were generated by ~ 0426 UTC explosions that were accompanied by air-pressure waves. Efforts to model this event are unable to reproduce the timing of the large tsunami wave that toppled a weather station and communication tower on a 13 m-high ridge on western Tongatapu after 0500 UTC. Smaller tsunami waves continued until ~ 0900, coincident with a second energetic phase of eruption, and noted by eyewitnesses on Tungua and Mango Islands. Despite an extreme level of destruction caused by this tsunami, the death toll was extraordinarily low (4 victims). Interviews with witnesses and analysis of videos posted on social media suggest that this can be attributed to the arrival of smaller ‘pre tsunami’ waves that prompted evacuations, heightened tsunami awareness due to tsunami activity and advisories on the day before, the absence of tourists and ongoing tsunami education efforts since the 2009 Niuatoputapu, Tonga tsunami. This event highlights an unexpectedly great hazard from volcanic tsunami worldwide, which in Tonga’s case overprints an already extreme level of tectonic tsunami hazard. Education and outreach efforts should continue to emphasize the ‘natural warning signs’ of strong ground shaking and unusual wave and current action, and the importance of self-evacuation from coastal areas of low-lying islands. The stories of survival from this event can be used as global best practice for personal survival strategies from future tsunami.
Journal Article
Developing the future vision for seamless multi-hazard warnings for volcanic eruptions—outcomes from a workshop at IAVCEI 2023, Rotorua
2024
A half-day workshop was held following the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Rotorua, New Zealand, on 5 February 2023. The workshop took advantage of the presence of operationally focused meteorologists, leaders from the World Meteorological Organization (WMO) and volcanologists (mostly from volcano observatories) for an aviation workshop over the previous 2 days. Our workshop focused on non-aviation issues but sought to develop the ‘big-picture’ of multi-hazard arrangements, particularly noting the intertwining of the disciplines for many volcanic hazards, and a global push towards better integrated, impact-based multi-hazard early warning systems, including especially the Sendai Framework and the ‘Early Warnings for All’ initiative. The hazards requiring joint multi-disciplinary arrangements include tsunamis, ashfall and airborne/water-borne ash, rainfall-induced dome collapses, lahars, pumice, glacial floods, and gas. Of these, only airborne ash for aviation users has received much attention. Following an afternoon of presentations, panel discussions, and breakout discussion, two summary visualisations were prepared—a future ‘vision’ and a future ‘roadmap’ for multi-hazard operations. These are presented as input towards follow-up actions, including ensuring that volcanic ash for aviation arrangements are embedded within a holistic multi-hazard and multi-user approach.
Journal Article
Probabilistic hazard analyses for a small island: methods for quantifying tephra fall hazard and appraising possible impacts on Ascension Island
by
Crummy, Julia
,
Osman, Sara
,
Thomas, Mark
in
Airports
,
Awareness-raising
,
Communications networks
2024
Proximal to the source, tephra fall can cause severe disruption, and populations of small volcanically active islands can be particularly susceptible. Volcanic hazard assessments draw on data from past events generated from historical observations and the geological record. However, on small volcanic islands, many eruptive deposits are under-represented or missing due to the bulk of tephra being deposited offshore and high erosion rates from weather and landslides. Ascension Island is such an island located in the South Atlantic, with geological evidence of mafic and felsic explosive volcanism. Limited tephra preservation makes it difficult to correlate explosive eruption deposits and constrains the frequency or magnitude of past eruptions. We therefore combined knowledge from the geological record together with eruptions from the analogous São Miguel island, Azores, to probabilistically model a range of possible future explosive eruption scenarios. We simulated felsic events from a single vent in the east of the island, and, as mafic volcanism has largely occurred from monogenetic vents, we accounted for uncertainty in future vent location by using a grid of equally probable source locations within the areas of most recent eruptive activity. We investigated the hazards and some potential impacts of short-lived explosive events where tephra fall deposits could cause significant damage and our results provide probabilities of tephra fall loads from modelled events exceeding threshold values for potential damage. For basaltic events with 6–10 km plume heights, we found a 50% probability that tephra fallout across the west side of the island would impact roads and the airport during a single explosive event, and if roofs cannot be cleared, three modelled explosive phases produced tephra loads that may be sufficient to cause roof collapse (≥ 100 kg m
−2
). For trachytic events, our results show a 50% probability of loads of 2–12 kg m
−2
for a plume height of 6 km increasing to 898–3167 kg m
−2
for a plume height of 19 km. Our results can assist in raising awareness of the potential impacts of tephra fall from short-lived explosive events on small islands.
Journal Article