Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,715 result(s) for "Volterra integral equation"
Sort by:
On the Maximum Principle for Optimal Control Problems of Stochastic Volterra Integral Equations with Delay
In this paper, we prove both necessary and sufficient maximum principles for infinite horizon discounted control problems of stochastic Volterra integral equations with finite delay and a convex control domain. The corresponding adjoint equation is a novel class of infinite horizon anticipated backward stochastic Volterra integral equations. Our results can be applied to discounted control problems of stochastic delay differential equations and fractional stochastic delay differential equations. As an example, we consider a stochastic linear-quadratic regulator problem for a delayed fractional system. Based on the maximum principle, we prove the existence and uniqueness of the optimal control for this concrete example and obtain a new type of explicit Gaussian state-feedback representation formula for the optimal control.
Legendre–Galerkin Methods for Third Kind VIEs and CVIEs
The main purpose of this paper is to present a spectral Legendre–Galerkin method for solving Volterra integral equations of the third kind. When the operator associated with the equivalent Volterra integral equations of second kind is compact, the resulting system produced by this spectral method is uniquely solvable and the approximate solution attains the optimal convergence order. While the related operator is noncompact, that brings a serious challenge in numerical analysis. In order to overcome this difficulty, we first decompose the original operator into three operators, one is the identity operator, the other is the contraction operator and the third one is compact. Under this decomposition, we show that the proposed method guarantees the unique solvability of the approximate equation. Moreover, we establish that the approximate solution arrives at the quasi-optimal order of global convergence. In addition, we extend this spectral method to solve the associated cordial Volterra integral equations. Finally, to confirm the theoretical results, two numerical examples are presented.
Eigenvalues of Volterra Operator
Integral equations frequently appear in many mechanics problems. Several of them are grouped based on the location of an unknown function or the integration interval. Here we have a boundary problem that will be rearranged into Volterra integral equation. From this equation, the integral operator (namely the Volterra operator) will be developed by determining the kernel. Then the eigenvalues of this operator will be sought.
On Hilfer generalized proportional fractional derivative
Motivated by the Hilfer and the Hilfer–Katugampola fractional derivative, we introduce in this paper a new Hilfer generalized proportional fractional derivative, which unifies the Riemann–Liouville and Caputo generalized proportional fractional derivative. Some important properties of the proposed derivative are presented. Based on the proposed derivative, we consider a nonlinear fractional differential equation with nonlocal initial condition and show that this equation is equivalent to the Volterra integral equation. In addition, the existence and uniqueness of solutions are proven using fixed point theorems. Furthermore, we offer two examples to clarify the results.
Stochastic Volterra integral equations with a parameter
In this paper, we study the properties of continuity and differentiability of solutions to stochastic Volterra integral equations and backward stochastic Volterra integral equations depending on a parameter.
Stochastic Volterra equations with time-changed Lévy noise and maximum principles
Motivated by a problem of optimal harvesting of natural resources, we study a control problem for Volterra type dynamics driven by time-changed Lévy noises, which are in general not Markovian. To exploit the nature of the noise, we make use of different kind of information flows within a maximum principle approach. For this we work with backward stochastic differential equations (BSDE) with time-change and exploit the non-anticipating stochastic derivative introduced in Di Nunno and Eide (Stoch Anal Appl 28:54-85, 2009). We prove both a sufficient and necessary stochastic maximum principle.
Collocation Methods for General Caputo Two-Point Boundary Value Problems
A general class of two-point boundary value problems involving Caputo fractional-order derivatives is considered. Such problems have been solved numerically in recent papers by Pedas and Tamme, and by Kopteva and Stynes, by transforming them to integral equations then solving these by piecewise-polynomial collocation. Here a general theory for this approach is developed, which encompasses the use of a variety of transformations to Volterra integral equations of the second kind. These integral equations have kernels comprising a sum of weakly singular terms; the general structure of solutions to such problems is analysed fully. Then a piecewise-polynomial collocation method for their solution is investigated and its convergence properties are derived, for both the basic collocation method and its iterated variant. From these results, an optimal choice can be made for the transformation to use in any given problem. Numerical results show that our theoretical convergence bounds are often sharp.
The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method
The aim of this paper is to present a new method and the tool to validate the numerical results of the Volterra integral equation with discontinuous kernels in linear and non-linear forms obtained from the Adomian decomposition method. Because of disadvantages of the traditional absolute error to show the accuracy of the mathematical methods which is based on the floating point arithmetic, we apply the stochastic arithmetic and new condition to study the efficiency of the method which is based on two successive approximations. Thus the CESTAC method (Controle et Estimation Stochastique des Arrondis de Calculs) and the CADNA (Control of Accuracy and Debugging for Numerical Applications) library are employed. Finding the optimal iteration of the method, optimal approximation and the optimal error are some of advantages of the stochastic arithmetic, the CESTAC method and the CADNA library in comparison with the floating point arithmetic and usual packages. The theorems are proved to show the convergence analysis of the Adomian decomposition method for solving the mentioned problem. Also, the main theorem of the CESTAC method is presented which shows the equality between the number of common significant digits between exact and approximate solutions and two successive approximations.This makes in possible to apply the new termination criterion instead of absolute error. Several examples in both linear and nonlinear cases are solved and the numerical results for the stochastic arithmetic and the floating-point arithmetic are compared to demonstrate the accuracy of the novel method.
Precision and efficiency of an interpolation approach to weakly singular integral equations
Purpose This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in engineering and the electrostatic potential theory, using the modified Lagrange polynomial interpolation technique combined with the biconjugate gradient stabilized method (BiCGSTAB). The framework for the existence of the unique solutions of the integral equations is provided in the context of the Banach contraction principle and Bielecki norm. Design/methodology/approach The authors have applied the modified Lagrange polynomial method to approximate the numerical solutions of the second kind of weakly singular Volterra and Fredholm integral equations. Findings Approaching the interpolation of the unknown function using the aforementioned method generates an algebraic system of equations that is solved by an appropriate classical technique. Furthermore, some theorems concerning the convergence of the method and error estimation are proved. Some numerical examples are provided which attest to the application, effectiveness and reliability of the method. Compared to the Fredholm integral equations of weakly singular type, the current technique works better for the Volterra integral equations of weakly singular type. Furthermore, illustrative examples and comparisons are provided to show the approach’s validity and practicality, which demonstrates that the present method works well in contrast to the referenced method. The computations were performed by MATLAB software. Research limitations/implications The convergence of these methods is dependent on the smoothness of the solution, it is challenging to find the solution and approximate it computationally in various applications modelled by integral equations of non-smooth kernels. Traditional analytical techniques, such as projection methods, do not work well in these cases since the produced linear system is unconditioned and hard to address. Also, proving the convergence and estimating error might be difficult. They are frequently also expensive to implement. Practical implications There is a great need for fast, user-friendly numerical techniques for these types of equations. In addition, polynomials are the most frequently used mathematical tools because of their ease of expression, quick computation on modern computers and simple to define. As a result, they made substantial contributions for many years to the theories and analysis like approximation and numerical, respectively. Social implications This work presents a useful method for handling weakly singular integral equations without involving any process of change of variables to eliminate the singularity of the solution. Originality/value To the best of the authors’ knowledge, the authors claim the originality and effectiveness of their work, highlighting its successful application in addressing weakly singular Volterra and Fredholm integral equations for the first time. Importantly, the approach acknowledges and preserves the possible singularity of the solution, a novel aspect yet to be explored by researchers in the field.
New Results on Ulam Stabilities of Nonlinear Integral Equations
This article deals with the study of Hyers–Ulam stability (HU stability) and Hyers–Ulam–Rassias stability (HUR stability) for two classes of nonlinear Volterra integral equations (VIEqs), which are Hammerstein-type integral and Hammerstein-type functional integral equations, respectively. In this article, both the HU stability and HUR stability are obtained for the first integral equation and the HUR stability is obtained for the second integral equation. Among the used techniques, we present fixed point arguments and the Gronwall lemma as a basic tool. Two supporting examples are also provided to demonstrate the applications and effectiveness of the results.