Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
67,719
result(s) for
"WATER SECURITY"
Sort by:
The coming storm : why water will write the 21st century
by
Fox, Liam, 1961- author
,
WaterAid (Organization), associated with work
in
Water security.
,
Water security Economic aspects.
,
Water security Government policy.
2024
Following Russia's aggressive war in Ukraine, the world is suddenly gripped by concerns over energy security. And yet, there is an even greater threat ahead - one that is much more likely to shape the events of the twenty-first century than the competition for oil or gas. The combination of an ever-increasing global population, climate change, industrialisation, urbanisation and limited natural resources means that one difficulty, above all, will shape the political, economic and security environment in the years ahead: that is water. If people and nations will fight for fossil fuels, it is nothing compared to what they will do for the most vital natural resource of all. As both a citizen who has supported water charities and worked in the NHS and a politician who has dealt with security and economic issues, Liam Fox tells the story of water and the problems it presents in a more complete way than ever before. The Coming Storm unites a range of concerns that are often written about separately but seldom together and provides a comprehensible and compelling call for urgent action.
Himalayan Glaciers
by
Council, National Research
,
Education, Division of Behavioral and Social Sciences and
,
Population, Committee on
in
Climatic changes
,
Economic aspects
,
Glaciers
2012
Scientific evidence shows that most glaciers in South Asia's Hindu Kush Himalayan region are retreating, but the consequences for the region's water supply are unclear, this report finds. The Hindu Kush Himalayan region is the location of several of Asia's great river systems, which provide water for drinking, irrigation, and other uses for about 1.5 billion people. Recent studies show that at lower elevations, glacial retreat is unlikely to cause significant changes in water availability over the next several decades, but other factors, including groundwater depletion and increasing human water use, could have a greater impact. Higher elevation areas could experience altered water flow in some river basins if current rates of glacial retreat continue, but shifts in the location, intensity, and variability of rain and snow due to climate change will likely have a greater impact on regional water supplies.
Himalayan Glaciers: Climate Change, Water Resources, and Water Security makes recommendations and sets guidelines for the future of climate change and water security in the Himalayan Region. This report emphasizes that social changes, such as changing patterns of water use and water management decisions, are likely to have at least as much of an impact on water demand as environmental factors do on water supply. Water scarcity will likely affect the rural and urban poor most severely, as these groups have the least capacity to move to new locations as needed. It is predicted that the region will become increasingly urbanized as cities expand to absorb migrants in search of economic opportunities. As living standards and populations rise, water use will likely increase-for example, as more people have diets rich in meat, more water will be needed for agricultural use. The effects of future climate change could further exacerbate water stress.
Himalayan Glaciers: Climate Change, Water Resources, and Water Security explains that changes in the availability of water resources could play an increasing role in political tensions, especially if existing water management institutions do not better account for the social, economic, and ecological complexities of the region. To effectively respond to the effects of climate change, water management systems will need to take into account the social, economic, and ecological complexities of the region. This means it will be important to expand research and monitoring programs to gather more detailed, consistent, and accurate data on demographics, water supply, demand, and scarcity.
The History of Water in the Land Once Called Palestine
by
Learmont, Isabelle
,
Ward, Christopher
,
Ruckstuhl, Sandra
in
Conflict and Security Studies
,
Israel / Palestine
,
Oil, Water and Energy Studies
2022,2021
Shared water resources in Israel and Palestine are often the site of political, economic, historical, legal and ethical contestation. In this, the first of two volumes on the subject, the authors look beyond the political tensions of the region, to argue for the need for shared water security and co-operative resource management. The History of Water in the Land Once Called Palestine, traces the history of water resources and security and their development from the Ottoman period until 2020, examining how the state of water security amongst Palestinians and Israelis has diverged, resulting in the current success of Israeli water security in contrast to the high water insecurity experienced by Palestinians. The authors assess water security in three parts: security of access to water resources, security of access to water services and finally, security against risks to and from water.
Water and the future of humanity : revisiting water security
This unique, engaging, and highly authoritative volume enlightens readers on changes needed in the way society accesses, provides, and uses water. It further shines a light on changes needed in the way we use food, energy, and other goods and services in relation to water, and offers projections and recommendations, up to 2050, that apply to water access challenges facing the poor and the common misuse of water in industry, agriculture, and municipalities. Written by an unparalleled slate of experts convened by the Calouste Gulbenkian Foundation, the book takes on one of the most critical issues on the planet today. In a frank yet optimistic assessment of major developmental challenges, but also opportunities, facing future generations, the author elucidates linkages between water and a range of other drivers from various disciplinary and stakeholder perspectives. Ultimately portraying the belief that Humanity can harness its visionary abilities, technologies, and economic resources for increased wellbeing and sound stewardship of resources, the book presents an optimistic statement stressing actions scientists, policy makers, and consumers can and must take to meet the water management challenges of a warming planet anticipating nine billion inhabitants by 2050.
Regional water security evaluation with risk control model and its application in Jiangsu Province, China
by
Shamseldin, Asaad
,
Chen, Yaqian
,
Guo, Yan
in
algorithms
,
Analytic hierarchy process
,
Aquatic Pollution
2021
To reduce losses from the various disasters, regional water security evaluation and risk control model is studied. The model is built upon different kinds of indices in water security system, proceeding from the whole structure and its parts of evaluation, forewarning and decision making analysis. Based on China’s national conditions, this study firstly advances an evaluation index system of regional water security, which includes three subsystems of water resource security, water environment security, and water disaster control security. Secondly, fuzzy analytic hierarchy process based on accelerating genetic algorithm (AGA-FAHP) combines with entropy weight method (EW) to determine the objective weights of evaluation indexes. The subjective and objective weights can be integrated by the principle of minimum relative information entropy. The subsystem weights are obtained by using AGA-FAHP. Then regional water security evaluation model is established. Thirdly, the comparison judging method is adopted to divide warning degree of water security with the comprehensive evaluation index and forewarning standards, and then the local conditions for proposing planning schemes. Finally, decision making analysis is employed to find the effective indices based on projection pursuit technique with the ideal point method in multi-index decision. This study takes Jiangsu province, China as an example. The evaluation results from 2000 to 2015 show that the development trend of water security is increasing on the whole except in several individual years. Risk forewarning doesn’t take place in recent years. But risk is always there. So, project and non-project measures are proposed for the corresponding forewarning levels. From light warnings for three times and moderate warning for once in 2000, 2001, 2002, and 2004, index 1, 3, 4, 11, 13, 17, and 18 are selected as the effective indices to decision making analysis in common. Then, the solution schemes are given as the processing method accordingly. This conclusion is reasonable and its method is practical that match the reality. It suggests that the presented model is feasible with theory and application, which can offer advice in regional water security management to some extent.
Journal Article
Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin
2018
Kathmandu Upatyaka Khanepani Limited (KUKL) has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area) of the Kathmandu Valley (KV). The project, called the “Melamchi Water Supply Project (MWSP)”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day) through the first phase and an additional 340 MLD through the second phase. The area has recently faced a severe water deficit and KUKL’s existing infrastructure has had a limited capability, supplying only 19% of the water that is demanded in its service areas during the dry season and 31% during the wet season. In this context, this study aims to assess the temporal trends and spatial distribution of household water security index (WSI), defined as a ratio of supply to demand for domestic water use for basic human water requirements (50 L per capita per day (lpcd)) and economic growth (135 lpcd) as demand in pre- and post-MWSP scenarios. For this purpose, data on water demand and supply with infrastructure were used to map the spatial distribution of WSI and per capita water supply using ArcMap. Results show a severe water insecurity condition in the year 2017 in all KUKL service areas (SAs), which is likely to improve after completion of the MWSP. It is likely that recent distribution network and strategies may lead to inequality in water distribution within the SAs. This can possibly be addressed by expanding existing distribution networks and redistributing potable water, which can serve an additional 1.21 million people in the area. Service providers may have to develop strategies to strengthen a set of measures including improving water supply infrastructures, optimizing water loss, harnessing additional water from hills, and managing water within and outside the KUKL SAs in the long run to cover the entire KV.
Journal Article
Identification of regional water security issues in China, using a novel water security comprehensive evaluation model
2020
In order to solve regional water security issues, such as shortage of water resources, the aggravation of water pollution, the destruction of the ecological environment, etc., this study proposed the flood control security index, resource security index and ecological security index, respectively, according to the construction principle of human development index. Based on the above security indexes, a novel water security comprehensive evaluation model is established by combining the coupling coordination degree model and the state space model. The proposed model has the advantage of simple operation and fast data speed, which is convenient for water security evaluation in different periods and regions. Taking China as an example, the water security conditions were evaluated from 2007 to 2016 for 31 provincial-level administrative regions in China, including flood control security index, resource security index, ecological security index and water security level of each region, and the specific problems of water security in each region were obtained. The evaluation results are consistent with the actual situation in each region, which provides the scientific basis for the local government authorities to formulate the corresponding regional water security policy.
Journal Article