Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,124 result(s) for "WIND POTENTIAL"
Sort by:
Copula‐based joint distribution analysis of wind speed and wind direction: Wind energy development for Hong Kong
Accurate and reliable assessment of wind energy potential has important implication to the wind energy industry. Most previous studies on wind energy assessment focused solely on wind speed, whereas the dependence of wind energy on wind direction was much less considered and documented. In this paper, a copula‐based method is proposed to better characterize the direction‐related wind energy potential at six typical sites in Hong Kong. The joint probability density function (JPDF) of wind speed and wind direction is constructed by a series of copula models. It shows that Frank copula has the best performance to fit the JPDF at hilltop and offshore sites while Gumbel copula outperforms other models at urban sites. The derived JPDFs are applied to estimate the direction‐related wind power density at the considered sites. The obtained maximum direction‐related wind energy density varies from 41.3 W/m2 at an urban site to 507.9 W/m2 at a hilltop site. These outcomes are expected to facilitate accurate micro‐site selection of wind turbines, thereby improving the economic benefits of wind farms in Hong Kong. Meanwhile, the developed copula‐based method provides useful references for further investigations regarding direction‐related wind energy assessments at various terrain regions. Notably, the proposed copula‐based method can also be applied to characterize the direction‐related wind energy potential somewhere other than Hong Kong.
Regional Spatial Analysis of the Offshore Wind Potential in Japan
This study presents an approach for estimating the offshore wind potential of Japan. Bathymetry data (1 km mesh) and near shore wind speed data of the year 2018 were used to assess the potential. A turbine with a peak power of 10.6 MW was employed for the analysis. The potential was calculated for multiple regions. These regions are based on the service areas of the major electricity supply companies in Japan. Overall, the results show that Japan has the potential to produce up to 32,028 PJ electricity per year. The electricity demand of 2018 amounts to 3231 PJ. The potential is therefore large enough to cover Japan’s electricity needs ten-times over. The capacity that could theoretically be installed amounts to 2720 GW, which is a multiple of the current worldwide installed capacity of 29.1 GW (2019). In addition to the huge potential, the regional assessment shows that the regions vary greatly in their potential; of all the considered regions, Hokkaido and Kyushu have the highest overall potential.
Spatial–Temporal Estimation and Analysis of Japan Onshore and Offshore Wind Energy Potential
In the carbon-neutral scenarios fixed by most developed countries, wind and solar resources play a significant role due to their substantial potential. Their instability can be mitigated through smarter designs of energy systems, including sector coupling and cross-border interconnections, which require detailed information on the spatial and temporal evolution of these intermittent resources. The present study aims at estimating the spatial–temporal energy potential of wind in Japan based on meteorological weather data. These data allow to analyze the potential of resources sharing to reduce power generation’s lack and excess, even in such an isolated country due to its variety of climate conditions and local energy demand. The correlation skewness is introduced as a measure of the sites’ uniqueness to identify important sites for the spatial distribution of capacity toward the efficient stabilization of supply at a national scale in a model-free fashion.
Transmission expansion for renewable energy scale-up
Scaling up renewable energy, such as wind and solar, goes hand-in-hand with the expansion of transmission infrastructure. The richest solar and wind renewable energy sites are often located far away from consumption centers or existing transmission networks. Unlike fossil fuel-based power sources, renewable energy sources are greatly site-constrained and, for this reason, transmission networks need to be expanded to reach the renewable energy sites. Delivering transmission is a challenge, given the dispersion and granularity of renewable sources. Tapping a few hundred megawatts of renewable energy sources, such as wind and solar power, will likely require delivering transmission to several sites. Furthermore, transmission is also required to smooth out the variability of new renewable sources in a large geographical area. For these reasons, countries' renewable energy scale-up efforts are being challenged by the need for timely and efficient delivery of transmission networks. The objective of this report is to present emerging lessons and recommendations on approaches to efficiently and effectively expand transmission networks for renewable energy scale-up. The report focuses on the planning and regulatory aspects of transmission expansion that are relevant to transmission utilities and electricity regulators.
Investment in Offshore Wind Energy in Poland and Its Impact on Public Opinion
The availability of energy-bearing resources is a key determinant of the development strategy of the world’s energy systems. In the case of Poland, the wind energy potential of the Baltic Sea provides the basis for the development of offshore wind energy in the country. The processes of transforming solutions towards green technologies require appropriate legislation, significant financial outlays, as well as public support for this dimension of activities. The latter strand requires continuous measurement to dynamically model the energy transition strategy. In the author’s opinion, the available literature does not sufficiently explain this theme in relation to Polish conditions. Hence, it was considered reasonable to investigate the impact of offshore wind energy development in Poland on public opinion in a selected region of Poland, in order to diagnose the current scale of support for the changes taking place, and to identify the main expectations and fears related to this activity, which was assumed as the main objective of the study. The added value of the survey is the analysis of changes in public opinion over time. The methodology used for the research was a study of the scientific literature, with analysis of the results of own and secondary research conducted in Poland. In terms of in-depth research, statistical survey techniques supported by the PQstat programme were used. The results of the survey confirmed significant public support in the surveyed area for offshore wind energy development in Poland (68%). The overall percentage of support for offshore development increased by 5% y/y. Economic considerations for the support of the activities in question with the potential vision of lowering energy prices in the domestic market were confirmed with a result of 65%. It was further confirmed that a key aspect of support for the offshore development strategy in the surveyed region of Poland is the potential for development of the region in relation to offshore farm investments, with a focus on the labour market, with indications of 53% for both themes. Interestingly, there was no concern in relation to the risk of landscape change in an undesirable direction in 2024.
Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya
The current study is focused on the economic and financial assessments of solar and wind power potential for nine selected regions in Libya for the first time. As the existing meteorological data, including wind speed and global solar radiation, are extremely limited due to the civil war in the country, it was therefore decided to use the NASA (National Aeronautics and Space Administration) database as a source of meteorological information to assess the wind and solar potential. The results showed that the country has huge solar energy potential compared to wind energy potential. Additionally, it is found that Al Kufrah is a suitable region for the future installation of the Photovoltaic (PV) power plant due to high annual solar radiation. Based on the actual wind speed analysis, Benghazi and Dernah are the best regions for large-scale wind farm installation in the future taking into account existing meteorological data limitations. The values of the wind power density in all regions are considerable and small-scale wind turbines can be used to generate electricity based on NASA average monthly wind data for 37 years (1982–2019). Moreover, this work aimed to evaluate the wind/PV systems technical and economically through RETScreen Expert (Version 6.0, CanmetENERGY Varennes Research Centre of Natural Resources Canada, Varennes, Canada). Focusing on the power supply crisis in the country, the potential of electricity production by 5 kW grid-connected residential/household rooftop PV in all regions is proposed and presented. Additionally, this paper evaluated a techno-economic analysis of the 50MW wind/PV system in suitable places. The performance of a 5 kW and 50 MW PV solar system with three PV technologies, namely mono-crystalline silicon, poly-crystalline silicon, and thin-film (CdTe), was also analyzed. The results demonstrated that the development of the wind/PV system in the selected regions is both technically and economically feasible. The outcomes of this study can help decision-makers in designing and installing PV power plants as an alternative source for the future.
Offshore Energy Development in Poland—Social and Economic Dimensions
The development of green technology in the world is progressing extremely rapidly. New possibilities for obtaining energy from renewable sources are constantly being sought and existing solutions are being improved. The multifaceted potential of the seas and oceans is an important aspect being taken into account in the development of the energy systems of a number of economies. One dimension of action in this area is the orientation towards offshore wind energy and the construction of offshore wind farms for this purpose. The purpose of this article is to analyse the importance of offshore wind farms in Poland’s energy system and to assess public perception of the changes taking place in this dimension. The article is based on research and critical analysis of the available literature, legal regulations and industry reports, as well as on the results of our own surveys, the scientific findings of which were developed with the application of statistical instruments using PQstat software, ensuring the expected quality of results. The findings of the article indicate the significant importance of offshore wind farms in the creation of Poland’s energy mix, with differing public attitudes towards their construction. Furthermore, the results of the research indicate a differentiated attitude of society towards the construction of offshore wind farms. The main motivation for majority support of the measure in question are economic reasons, which are connected with the expectation of a real price reduction per 1 kW of energy, as well as increased attractiveness of the region due to investments in this area. The main concern with the measure relates to environmental aspects, with concerns about the functioning of ecosystems in light of the construction and subsequent operation of wind farms. Negative public opinion is also signalled in relation to the potential risk of landscape change in a direction that is undesirable for the studied developed coastal tourist region in Poland.
Innovative transformer neural network for wind density function estimation at different hub heights of turbine
Accurate estimation of wind power potential is important for resource assessment to install wind turbine. Weibull distribution functions (WDF) have been widely used and it is a function of wind speed (WS). With Turbine hub height WS get changes and it form complex nonlinear equations with WDF. To compute this paper introduces an innovative Transformer Neural Network (TNN) model for WDE estimation leverage self attention mechanism to capture complex pattern. For this wind power potential (WPP) of a site located in the Northeastern India is selected. The novelty is that WPP is performed up to 80 m height and not up to a 150 m height for North-Eastern India. Cubic Factor (CF) method is used for the evaluation of Weibull parameters, i.e., scale ‘c’ and shape ‘k’. CF and k are independent of height and are found to be 1.96 and 1.95, respectively. The scale varies from 2.65 to 3.90 from height 10 m to 150 m. TNN performance is evaluated by Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R²), Mean Bias Error (MBE), and Mean Absolute Percentage Error (MAPE). For the Cumulative Distribution Function (CDF), the model achieved an MSE of 0.0012, RMSE of 0.0357, MAE of 0.0238, R² of 0.9170, MBE of -0.0071, and MAPE of 12.3158%. In comparison, the Weibull density functions (WDF) estimation yielded an MSE of 0.0003, RMSE of 0.0178, MAE of 0.0130, R² of 0.9039, MBE of -0.00018, and MAPE of 11.67%. The results demonstrate the Transformer model’s high accuracy and robustness in estimating WDF, making it a reliable tool for assessing wind energy potential at different turbine hub heights.
Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data
The present study deals with wind energy analysis and the selection of an optimum type of wind turbine in terms of the feasibility of installing wind power system at three locations in South Korea: Deokjeok-do, Baengnyeong-do and Seo-San. The wind data measurements were conducted during 2005–2015 at Deokjeok-do, 2001–2016 at Baengnyeong-do and 1997–2016 at Seo-San. In the first part of this paper wind conditions, like mean wind speed, wind rose diagrams and Weibull shape and scale parameters are presented, so that the wind potential of all the locations could be assessed. It was found that the prevailing wind directions at all locations was either southeast or southwest in which the latter one being more dominant. After analyzing the wind conditions, 50-year and 1-year extreme wind speeds (EWS) were estimated using the graphical method of Gumbel distribution. Finally, according to the wind conditions at each site and international electro-technical commission (IEC) guidelines, a set of five different wind turbines best suited for each location were shortlisted. Each wind turbine was evaluated on the basis of technical parameters like monthly energy production, annual energy production (AEP) and capacity factors (CF). Similarly, economical parameters including net present value (NPV), internal rate of return (IRR), payback period (PBP) and levelized cost of electricity (LCOE) were considered. The analysis shows that a Doosan model WinDS134/3000 wind turbine is the most suitable for Deokjeok-do and Baengnyeong-do, whereas a Hanjin model HJWT 87/2000 is the most suitable wind turbine for Seo-San. Economic sensitivity analysis is also included and discussed in detail to analyze the impact on economics of wind power by varying turbine’s hub height.
On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany
Wind energy in Germany has experienced high growth rates over the last few years. The set political target in the German federal state of Baden-Wuerttemberg is to raise the share of wind energy in the overall electricity supply to 10% by 2020. To achieve this goal, detailed information on wind energy potential in Baden-Wuerttemberg is necessary. This study assesses the geographical wind energy potential (GP) in Baden-Wuerttemberg giving a guideline to identify suitable locations for wind energy utilization. The focus of this investigation lies in assessing GP for the mean annual meteorological wind energy potential (MP) as well as for the mean MP in December and August providing information on the seasonal behavior of wind power availability. A GIS-based approach is employed to identify sites without geographical restrictions and with sufficient MP at hub heights of 100 m, 140 m, and 200 m. The study finds that (1) the number of possible sites for wind energy utilization is strongly limited by geographical restrictions, (2) GP is highly dependent on MP and, therefore, (3) GP varies highly throughout a year since MP depends on the seasonal pattern of wind speed in Central Europe, showing high values in winter and low values in summer.