Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,151 result(s) for "WOUND MANAGEMENT"
Sort by:
Cohort study evaluating the burden of wounds to the UK’s National Health Service in 2017/2018: update from 2012/2013
ObjectiveTo evaluate the prevalence of wounds managed by the UK’s National Health Service (NHS) in 2017/2018 and associated health outcomes, resource use and costs.DesignRetrospective cohort analysis of the electronic records of patients from The Health Improvement Network (THIN) database.SettingPrimary and secondary care sectors in the UK.ParticipantsRandomly selected cohort of 3000 patients from the THIN database who had a wound in 2017/2018.Primary and secondary outcome measuresPatients’ characteristics, wound-related health outcomes, healthcare resource use and total NHS cost of patient management.ResultsThere were an estimated 3.8 million patients with a wound managed by the NHS in 2017/2018, of which 70% healed in the study year; 89% and 49% of acute and chronic wounds healed, respectively. An estimated 59% of chronic wounds healed if there was no evidence of infection compared with 45% if there was a definite or suspected infection. Healing rate of acute wounds was unaffected by the presence of infection. Smoking status appeared to only affect the healing rate of chronic wounds. Annual levels of resource use attributable to wound management included 54.4 million district/community nurse visits, 53.6 million healthcare assistant visits and 28.1 million practice nurse visits. The annual NHS cost of wound management was £8.3 billion, of which £2.7 billion and £5.6 billion were associated with managing healed and unhealed wounds, respectively. Eighty-one per cent of the total annual NHS cost was incurred in the community.ConclusionThe annual prevalence of wounds increased by 71% between 2012/2013 and 2017/2018. There was a substantial increase in resource use over this period and patient management cost increased by 48% in real terms. There needs to be a structural change within the NHS in order to manage the increasing demand for wound care and improve patient outcomes.
Point-of-care detection devices for wound care and monitoring
Point-of-care (POC) detection devices for wound care and monitoring show promise but still have limitations and gaps in effectiveness.Validation through robust clinical trials is necessary to evaluate their accuracy, reliability, and impact on patient outcomes.Improved POC detection devices with enhanced sensitivity, specificity, accessibility, and integration with electronic health records can enhance accuracy and patient care.Challenges to widespread implementation include cost, training requirements, regulatory hurdles, expertise, data management, and interoperability.Technological advancements offer potential solutions, including cost-effective manufacturing, miniaturization, regulatory streamlining, and training solutions.Cloud computing, data storage, analytics, artificial intelligence, and machine learning can address data management challenges and assist analysis and decision support. Healthcare resources are heavily burdened by infections that impede the wound-healing process. A wide range of advanced technologies have been developed for detecting and quantifying infection biomarkers. Finding a timely, accurate, non-invasive diagnostic alternative that does not require a high level of training is a critical step toward arresting common clinical patterns of wound health decline. There is growing interest in the development of innovative diagnostics utilizing a variety of emerging technologies, and new biomarkers have been investigated as potential indicators of wound infection. In this review, we summarize diagnostics available for wound infection, including those used in clinics and still under development. Healthcare resources are heavily burdened by infections that impede the wound-healing process. A wide range of advanced technologies have been developed for detecting and quantifying infection biomarkers. Finding a timely, accurate, non-invasive diagnostic alternative that does not require a high level of training is a critical step toward arresting common clinical patterns of wound health decline. There is growing interest in the development of innovative diagnostics utilizing a variety of emerging technologies, and new biomarkers have been investigated as potential indicators of wound infection. In this review, we summarize diagnostics available for wound infection, including those used in clinics and still under development.
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
An Up-to-Date Review of Biomaterials Application in Wound Management
Whether they are caused by trauma, illness, or surgery, wounds may occur throughout anyone’s life. Some injuries’ complexity and healing difficulty pose important challenges in the medical field, demanding novel approaches in wound management. A highly researched possibility is applying biomaterials in various forms, ranging from thin protective films, foams, and hydrogels to scaffolds and textiles enriched with drugs and nanoparticles. The synergy of biocompatibility and cell proliferative effects of these materials is reflected in a more rapid wound healing rate and improved structural and functional properties of the newly grown tissue. This paper aims to present the biomaterial dressings and scaffolds suitable for wound management application, reviewing the most recent studies in the field.
Antimicrobial Wound Dressings: A Concise Review for Clinicians
Wound management represents a substantial clinical challenge due to the growing incidence of chronic skin wounds resulting from venous insufficiency, diabetes, and obesity, along with acute injuries and surgical wounds. The risk of infection, a key impediment to healing and a driver of increased morbidity and mortality, is a primary concern in wound care. Recently, antimicrobial dressings have emerged as a promising approach for bioburden control and wound healing. The selection of a suitable antimicrobial dressing depends on various parameters, including cost, wound type, local microbial burden and the location and condition of the wound. This review covers the different types of antimicrobial dressings, their modes of action, advantages, and drawbacks, thereby providing clinicians with the knowledge to optimize wound management.
Negative pressure wound therapy in high-risk gastrointestinal surgery: a retrospective cohort study on postoperative complications
Background Surgical site infections (SSIs) are a significant cause of morbidity in colorectal surgeries, mainly due to the contaminated nature of these procedures. Traditional wound management techniques have limitations, leading to prolonged hospital stays and increased healthcare costs. Negative pressure wound therapy (NPWT) has emerged as an advanced method for managing surgical wounds, promoting faster healing by enhancing tissue perfusion, reducing edema, and managing wound exudate. This retrospective cohort study aims to compare the outcomes of NPWT with those of conventional wound care in patients undergoing high-risk gastrointestinal surgeries. Methods A total of 141 patients classified as having contaminated or dirty wounds were divided into two groups: the NPWT group (47 patients) and the conventional wound care group (94 patients). Postoperative outcomes, including SSIs, wound healing, dehiscence, and incisional hernia development, were monitored at 1 month and 1 year. Results The results revealed a significant reduction in superficial SSIs in the NPWT group (6.4% vs. 18.1%, p  = 0.04), along with shorter hospital stays (8.9 vs. 11.2 days, p  = 0.01). Incisional hernia rates were also significantly lower in the NPWT group at both 1 month (6.4% vs. 12.8%, p  = 0.05) and 1 year (6.4% vs. 16.0%, p  = 0.03). While the reduction in deep SSIs did not reach statistical significance (2.1% vs. 9.6%, p  = 0.08), the observed trend suggests further investigation. Conclusion This study demonstrated that NPWT not only reduces the incidence of SSIs and hospital stays but also decreases the long-term incidence of incisional hernias. These findings suggest that NPWT should be considered a standard approach for managing high-risk surgical wounds, especially in gastrointestinal procedures, where infection risks are inherently greater.
The Effectiveness of Virtual Reality in Managing Acute Pain and Anxiety for Medical Inpatients: Systematic Review
Virtual reality is increasingly being utilized by clinicians to facilitate analgesia and anxiolysis within an inpatient setting. There is however, a lack of a clinically relevant review to guide its use for this purpose. To systematically review the current evidence for the efficacy of virtual reality as an analgesic in the management of acute pain and anxiolysis in an inpatient setting. A comprehensive search was conducted up to and including January 2019 on PubMed, Ovid Medline, EMBASE, and Cochrane Database of Systematic reviews according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Search terms included virtual reality, vr, and pain. Primary articles with a focus on acute pain in the clinical setting were considered for the review. Primary outcome measures included degree of analgesia afforded by virtual reality therapy, degree of anxiolysis afforded by virtual reality therapy, effect of virtual reality on physiological parameters, side effects precipitated by virtual reality, virtual reality content type, and type of equipment utilized. Eighteen studies were deemed eligible for inclusion in this systematic review; 67% (12/18) of studies demonstrated significant reductions in pain with the utilization of virtual reality; 44% (8/18) of studies assessed the effects of virtual reality on procedural anxiety, with 50% (4/8) of these demonstrating significant reductions; 28% (5/18) of studies screened for side effects with incidence rates of 0.5% to 8%; 39% (7/18) of studies evaluated the effects of virtual reality on autonomic arousal as a biomarker of pain, with 29% (2/7) demonstrating significant changes; 100% (18/18) of studies utilized a head mounted display to deliver virtual reality therapy, with 50% being in active form (participants interacting with the environment) and 50% being in passive form (participants observing the content only). Available evidence suggests that virtual reality therapy can be applied to facilitate analgesia for acute pain in a variety of inpatient settings. Its effects, however, are likely to vary by patient population and indication. This highlights the need for individualized pilot testing of virtual reality therapy's effects for each specific clinical use case rather than generalizing its use for the broad indication of facilitating analgesia. In addition, virtual reality therapy has the added potential of concurrently providing procedural anxiolysis, thereby improving patient experience and cooperation, while being associated with a low incidence of side effects (nausea, vomiting, eye strain, and dizziness). Furthermore, findings indicated a head mounted display should be utilized to deliver virtual reality therapy in a clinical setting with a slight preference for active over passive virtual reality for analgesia. There, however, appears to be insufficient evidence to substantiate the effect of virtual reality on autonomic arousal, and this should be considered at best to be for investigational uses, at present.
Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management
Infections are the primary cause of death from burns and diabetic wounds. The clinical difficulty of treating wound infections with conventional antibiotics has progressively increased and reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeutic challenge. Most existing wound dressings are ineffective and suffer from constraints such as insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor mechanical performance. Using ineffective wound dressings might prolong the healing process of a wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities, the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing. This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs and their potential to revolutionize wound healing.