Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "WaOA"
Sort by:
Walrus optimizer-based optimal fractional order PID control for performance enhancement of offshore wind farms
Offshore wind farms (OWFs) play a crucial role in producing renewable energy in modern electrical power systems. However, to ensure that these facilities operate smoothly, they require robust control systems. As a result, this paper employed the newly developed Walrus Optimization algorithm (WaOA) to optimize the design parameters of fractional-order proportional-integral-derivative (FOPID) controllers in the power electronic interface circuits of the studied wind energy conversion system (WECS). In contrast to conventional optimization techniques like GA and PSO, the suggested approach proves more effective. The paper validates the WaOA application in optimizing FOPID controllers within a WECS comprising two, onshore and offshore, VSC stations at the two ends of an HVDC transmission system connecting OWFs to the mainland. The study shows that the WaOA outperforms GA and PSO, improving system stability and enabling quick recovery after disturbances. The study carried out using MATLAB/Simulink highlights the significance of newly recently introduced optimization techniques to ensure efficient and reliable operation of offshore wind energy systems, thereby expediting the transition to sustainable energy sources.
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
This paper presents an innovative and effective control strategy tailored for a deregulated, diversified energy system involving multiple interconnected area. Each area integrates a unique mix of power generation technologies: Area 1 combines thermal, hydro, and distributed generation; Area 2 utilizes a blend of thermal units, distributed solar technologies (DST), and hydro power; and Third control area hosts geothermal power station alongside thermal power generation unit and hydropower units. The suggested control system employs a multi-layered approach, featuring a blended methodology utilizing the Tilted Integral Derivative controller (TID) and the Fractional-Order Integral method to enhance performance and stability. The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm (WaOA). Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations. The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance. In addition, the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market, accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control. To ensure the reliability and resilience of the presented methodology, the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation. To wrap up, the study offers a pioneering control approach—a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm (WaOA)—designed for enhanced stability and performance in a complex, three-region hybrid energy system functioning within a deregulated framework.
Walrus Optimization-Based Adaptive Virtual Inertia Control for Frequency Regulation in Islanded Microgrids
Microgrids with high renewable energy penetration face critical challenges in frequency stability due to reduced system inertia and the presence of parameter uncertainties. This study introduces a novel adaptive virtual inertia control strategy utilizing a combination of the Walrus Optimization Algorithm (WaOA), a recent metaheuristic optimization technique, and Proportional–Integral–Derivative (PID) controllers (WaOA-PID) to improve frequency regulation in islanded microgrids under diverse operating conditions. The proposed method is evaluated across three scenarios: medium inertia, low inertia, and parametric uncertainty. Comparative analyses with conventional, IMC-tuned PID and H∞ Vector Internal Controllers (VIC) reveal that the WaOA-PID controller achieves the lowest overshoot, undershoot, and rate of change of frequency (RoCoF), while maintaining acceptable settling times in all cases. At an estimated load deviation of 0.18, the demand is varied from 200 MW to 250 MW to evaluate the system’s performance. The proposed technique yields an Integral Time Absolute Error (ITAE) of 0.000576, with PID gains of Ki = 0.9994, Kd = 0.185, and Kp = 0.774. Compared to traditional methods, the proposed controller demonstrates high reliability and efficiency in maintaining load frequency control and enhancing power system management, validating its suitability for real-time renewable energy-integrated microgrid applications.