Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
12,840 result(s) for "Walking - physiology"
Sort by:
Gait balance recovery after tripping: The influence of walking speed and ground inclination on muscle and joint function
Reactive lower limb muscle function during walking plays a key role in balance recovery following tripping, and ultimately fall prevention. The objective of this study was to evaluate muscle and joint function in the recovery limb during balance recovery after trip-based perturbations during walking. Twenty-four healthy participants underwent gait analysis while walking at slow, moderate and fast speeds over level, uphill and downhill inclines. Trip perturbations were performed randomly during stance, and lower limb kinematics, kinetics, and muscle contribution to the acceleration of the whole-body centre of mass (COM) were computed pre- and post-perturbation in the recovery limb. Ground slope and walking speed had a significant effect on lower limb joint angles, net joint moments and muscle contributions to support and propulsion during trip recovery (p < 0.05). Specifically, increasing walking speed during trip recovery significantly reduced hip extension in the recovery limb and increased knee flexion, particularly when walking uphill and at higher walking speeds (p < 0.05). Gluteus maximus played a critical role in providing support and forward propulsion of the body during trip recovery across all gait speeds and ground inclinations. This study provides a mechanistic link between muscle action, joint motion and COM acceleration during trip recovery, and underscores the potential of increased walking speed and ground inclination to increase fall risk, particularly in individuals prone to falling. The findings of this study may provide guidelines for targeted exercise therapy such as muscle strengthening for fall prevention.
The effect of stride length on lower extremity joint kinetics at various gait speeds
Robot-assisted training is a promising tool under development for improving walking function based on repetitive goal-oriented task practice. The challenges in developing the controllers for gait training devices that promote desired changes in gait is complicated by the limited understanding of the human response to robotic input. A possible method of controller formulation can be based on the principle of bio-inspiration, where a robot is controlled to apply the change in joint moment applied by human subjects when they achieve a gait feature of interest. However, it is currently unclear how lower extremity joint moments are modulated by even basic gait spatio-temporal parameters. In this study, we investigated how sagittal plane joint moments are affected by a factorial modulation of two important gait parameters: gait speed and stride length. We present the findings obtained from 20 healthy control subjects walking at various treadmill-imposed speeds and instructed to modulate stride length utilizing real-time visual feedback. Implementing a continuum analysis of inverse-dynamics derived joint moment profiles, we extracted the effects of gait speed and stride length on joint moment throughout the gait cycle. Moreover, we utilized a torque pulse approximation analysis to determine the timing and amplitude of torque pulses that approximate the difference in joint moment profiles between stride length conditions, at all gait speed conditions. Our results show that gait speed has a significant effect on the moment profiles in all joints considered, while stride length has more localized effects, with the main effect observed on the knee moment during stance, and smaller effects observed for the hip joint moment during swing and ankle moment during the loading response. Moreover, our study demonstrated that trailing limb angle, a parameter of interest in programs targeting propulsion at push-off, was significantly correlated with stride length. As such, our study has generated assistance strategies based on pulses of torque suitable for implementation via a wearable exoskeleton with the objective of modulating stride length, and other correlated variables such as trailing limb angle.
Effects of Testosterone Treatment in Older Men
In this study, men 65 years of age or older with low serum testosterone and symptoms of hypoandrogenism received testosterone or placebo for a year. Testosterone had a moderate benefit in sexual function and some benefit in mood but no benefit in vitality or walking distance. Testosterone concentrations in men decrease with increasing age. 1 , 2 Many symptoms and conditions similar to those that are caused by low testosterone levels in men with pituitary or testicular disease become more common with increasing age. Such symptoms include decreases in mobility, sexual function, and energy. These parallels suggest that the lower testosterone levels in older men may contribute to these conditions. Previous trials of testosterone treatment in men 65 years of age or older, however, have yielded equivocal results. Although testosterone treatment consistently increased muscle mass and decreased fat mass, 3 , 4 effects on physical performance, 3 , 5 , 6 sexual function, . . .
Breaking sitting with light activities vs structured exercise: a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes
Aims/hypothesis We aimed to examine the effects of breaking sitting with standing and light-intensity walking vs an energy-matched bout of structured exercise on 24 h glucose levels and insulin resistance in patients with type 2 diabetes. Methods In a randomised crossover study, 19 patients with type 2 diabetes (13 men/6 women, 63 ± 9 years old) who were not using insulin each followed three regimens under free-living conditions, each lasting 4 days: (1) Sitting: 4415 steps/day with 14 h sitting/day; (2) Exercise: 4823 steps/day with 1.1 h/day of sitting replaced by moderate- to vigorous-intensity cycling (at an intensity of 5.9 metabolic equivalents [METs]); and (3) Sit Less: 17,502 steps/day with 4.7 h/day of sitting replaced by standing and light-intensity walking (an additional 2.5 h and 2.2 h, respectively, compared with the hours spent doing these activities in the Sitting regimen). Blocked randomisation was performed using a block size of six regimen orders using sealed, non-translucent envelopes. Individuals who assessed the outcomes were blinded to group assignment. Meals were standardised during each intervention. Physical activity and glucose levels were assessed for 24 h/day by accelerometry (activPAL) and a glucose monitor (iPro2), respectively. The incremental AUC (iAUC) for 24 h glucose (primary outcome) and insulin resistance (HOMA2-IR) were assessed on days 4 and 5, respectively. Results The iAUC for 24 h glucose (mean ± SEM) was significantly lower during the Sit Less intervention than in Sitting (1263 ± 189 min × mmol/l vs 1974 ± 324 min × mmol/l; p  = 0.002), and was similar between Sit Less and Exercise (Exercise: 1383 ± 194 min × mmol/l; p  = 0.499). Exercise failed to improve HOMA2-IR compared with Sitting (2.06 ± 0.28 vs 2.16 ± 0.26; p  = 0.177). In contrast, Sit Less (1.89 ± 0.26) significantly reduced HOMA2-IR compared with Exercise ( p  = 0.015) as well as Sitting ( p  = 0.001). Conclusions/interpretation Breaking sitting with standing and light-intensity walking effectively improved 24 h glucose levels and improved insulin sensitivity in individuals with type 2 diabetes to a greater extent than structured exercise. Thus, our results suggest that breaking sitting with standing and light-intensity walking may be an alternative to structured exercise to promote glycaemic control in patients type 2 diabetes. Trial registration: Clinicaltrials.gov NCT02371239 Funding: The study was supported by a Kootstra grant from Maastricht University Medical Centre + , and the Dutch Heart Foundation. Financial support was also provided by Novo Nordisk BV, and Medtronic and Roche made the equipment available for continuous glucose monitoring
The Effects of Free-Living Interval-Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetic Patients: A randomized, controlled trial
To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure-matched continuous walking for improving physical fitness, body composition, and glycemic control.
Virtual training leads to physical, cognitive and neural benefits in healthy adults
Physical activity, such as high-intensity intermittent aerobic exercise (HIE), can improve executive functions. Although performing strength or aerobic training might be problematic or not feasible for someone. An experimental situation where there is no actual movement, but the body shows physiological reactions, is during the illusion through immersive virtual reality (IVR). We aimed to demonstrate whether a virtual HIE-based intervention (vHIE) performed exclusively by the own virtual body has physical, cognitive, and neural benefits on the real body. 45 healthy young adults (cross-over design) experienced HIE training in IVR (i.e., the virtual body performed eight sets of 30 s of running followed by 30 s of slow walking, while the subject is completely still) in two random-ordered conditions (administered in two sessions one week apart): the virtual body is displayed in first-person perspective (1PP) or third-person perspective (3PP). During the vHIE, we recorded the heart rate and subjective questionnaires to confirm the effectiveness of the illusion; before and after vHIE, we measured cortical hemodynamic changes in the participants’ left dorsolateral prefrontal cortex (lDLPFC) using the fNIRS device during the Stroop task to test our main hypothesis. Preliminary, we confirmed that the illusion was effective: during the vHIE in 1PP, subjects’ heart rate increased coherently with the virtual movements, and they reported subjective feelings of ownership and agency. Primarily, subjects were faster in executing the Stroop task after the vHIE in 1PP; also, the lDLPFC activity increased coherently. Clinically, these results might be exploited to train cognition and body simultaneously. Theoretically, we proved that the sense of body ownership and agency can affect other parameters, even in the absence of actual movements.
Minimal Intensity Physical Activity (Standing and Walking) of Longer Duration Improves Insulin Action and Plasma Lipids More than Shorter Periods of Moderate to Vigorous Exercise (Cycling) in Sedentary Subjects When Energy Expenditure Is Comparable
Epidemiological studies suggest that excessive sitting time is associated with increased health risk, independent of the performance of exercise. We hypothesized that a daily bout of exercise cannot compensate the negative effects of inactivity during the rest of the day on insulin sensitivity and plasma lipids. Eighteen healthy subjects, age 21±2 year, BMI 22.6±2.6 kgm(-2) followed randomly three physical activity regimes for four days. Participants were instructed to sit 14 hr/day (sitting regime); to sit 13 hr/day and to substitute 1 hr of sitting with vigorous exercise 1 hr (exercise regime); to substitute 6 hrs sitting with 4 hr walking and 2 hr standing (minimal intensity physical activity (PA) regime). The sitting and exercise regime had comparable numbers of sitting hours; compared to the exercise regime, the minimal intensity PA regime had a higher estimated daily energy expenditure (238kcal/day) [corrected]. PA was assessed continuously by an activity monitor (ActivPAL) and a diary. Measurements of insulin sensitivity (oral glucose tolerance test, OGTT) and plasma lipids were performed in the fasting state, the morning after the 4 days of each regime. In the sitting regime, daily energy expenditure was about 500 kcal lower than in both other regimes. Area under the curve for insulin during OGTT was significantly lower after the minimal intensity PA regime compared to both sitting and exercise regimes 6727.3±4329.4 vs 7752.0±3014.4 and 8320.4±5383.7 mU•min/ml, respectively. Triglycerides, non-HDL cholesterol and apolipoprotein B plasma levels improved significantly in the minimal intensity PA regime compared to sitting and showed non-significant trends for improvement compared to exercise. One hour of daily physical exercise cannot compensate the negative effects of inactivity on insulin level and plasma lipids if the rest of the day is spent sitting. Reducing inactivity by increasing the time spent walking/standing is more effective than one hour of physical exercise, when energy expenditure is kept constant.
Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses
OBJECTIVE: Observational studies show breaking up prolonged sitting has beneficial associations with cardiometabolic risk markers, but intervention studies are required to investigate causality. We examined the acute effects on postprandial glucose and insulin levels of uninterrupted sitting compared with sitting interrupted by brief bouts of light- or moderate-intensity walking. RESEARCH DESIGN AND METHODS: Overweight/obese adults (n = 19), aged 45–65 years, were recruited for a randomized three-period, three-treatment acute crossover trial: 1) uninterrupted sitting; 2) seated with 2-min bouts of light-intensity walking every 20 min; and 3) seated with 2-min bouts of moderate-intensity walking every 20 min. A standardized test drink was provided after an initial 2-h period of uninterrupted sitting. The positive incremental area under curves (iAUC) for glucose and insulin (mean [95% CI]) for the 5 h after the test drink (75 g glucose, 50 g fat) were calculated for the respective treatments. RESULTS: The glucose iAUC (mmol/L) ⋅ h after both activity-break conditions was reduced (light: 5.2 [4.1–6.6]; moderate: 4.9 [3.8–6.1]; both P < 0.01) compared with uninterrupted sitting (6.9 [5.5–8.7]). Insulin iAUC (pmol/L) ⋅ h was also reduced with both activity-break conditions (light: 633.6 [552.4–727.1]; moderate: 637.6 [555.5–731.9], P < 0.0001) compared with uninterrupted sitting (828.6 [722.0–950.9]). CONCLUSIONS: Interrupting sitting time with short bouts of light- or moderate-intensity walking lowers postprandial glucose and insulin levels in overweight/obese adults. This may improve glucose metabolism and potentially be an important public health and clinical intervention strategy for reducing cardiovascular risk.
Exercise with a wearable hip-assist robot improved physical function and walking efficiency in older adults
Wearable assistive robotics has emerged as a promising technology to supplement or replace motor functions and to retrain people recovering from an injury or living with reduced mobility. We developed delayed output feedback control for a wearable hip-assistive robot, the EX1, to provide gait assistance. Our purpose in this study was to investigate the effects of long-term exercise with EX1 on gait, physical function, and cardiopulmonary metabolic energy efficiency in elderly people. This study used parallel experimental (exercise with EX1) and control groups (exercise without EX1). A total of 60 community-dwelling elderly persons participated in 18 exercise intervention sessions during 6 weeks, and all participants were assessed at 5 time points: before exercise, after 9 exercise sessions, after 18 sessions, and 1 month and 3 months after the last session. The spatiotemporal gait parameters, kinematics, kinetics, and muscle strength of the trunk and lower extremities improved more after exercise with EX1 than in that without EX1. Furthermore, the effort of muscles over the trunk and lower extremities throughout the total gait cycle (100%) significantly decreased after exercise with EX1. The net metabolic energy costs during walking significantly improved, and functional assessment scores improved more in the experimental group than in the control group. Our findings provide evidence supporting the application of EX1 in physical activity and gait exercise is effective to improve age-related declines in gait, physical function, and cardiopulmonary metabolic efficiency among older adults.