Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14,916
result(s) for
"Waste Water - microbiology"
Sort by:
Global wastewater microbiome reveals core bacterial community and viral diversity with regional antibiotic resistance patterns
by
Liang, Xingxing
,
Xue, Ying
,
Li, Dong
in
Anthropogenic Impacts
,
antibiotic resistance genes
,
Antibiotic Resistance Reservoirs
2025
Intensifying urbanization and human activities have dramatically increased global wastewater generation, creating complex microbial ecosystems that significantly impact environmental and public health. This study presents the first large-scale, comprehensive characterization of bacterial and viral communities in wastewater treatment systems worldwide. By analyzing samples from diverse geographical, climatic, and socioeconomic contexts, we reveal how wastewater microbiomes serve as microbial fingerprints of human society, reflecting regional characteristics while maintaining functional conservation. Our findings demonstrate that these communities function as ecological extensions of human gut microbiota in the external environment, with important implications for the spread of antibiotic resistance and pathogens. The identification of viruses as key metabolic regulators in these systems provides new perspectives on microbial community dynamics. This global-scale analysis advances our understanding of wastewater microbiology and offers valuable insights for improving wastewater management, enhancing environmental monitoring systems, and strengthening public health surveillance through wastewater-based epidemiology.
Journal Article
MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants
2022
Microbial communities are responsible for biological wastewater treatment, but our knowledge of their diversity and function is still poor. Here, we sequence more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and use the sequences to construct the ‘MiDAS 4’ database. MiDAS 4 is an amplicon sequence variant resolved, full-length 16S rRNA gene reference database with a comprehensive taxonomy from domain to species level for all sequences. We use an independent dataset (269 WWTPs) to show that MiDAS 4, compared to commonly used universal reference databases, provides a better coverage for WWTP bacteria and an improved rate of genus and species level classification. Taking advantage of MiDAS 4, we carry out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting regions of the 16S rRNA gene, revealing how environmental conditions and biogeography shape the activated sludge microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 966 genera and 1530 species that represent approximately 80% and 50% of the accumulated read abundance, respectively. Finally, we show that for well-studied functional guilds, such as nitrifiers or polyphosphate-accumulating organisms, the same genera are prevalent worldwide, with only a few abundant species in each genus.
Microbial communities are responsible for biological wastewater treatment. Here, Dueholm et al. generate more than 5 million high-quality, full-length 16S rRNA gene sequences from wastewater treatment plants across the world to construct a database with a comprehensive taxonomy, providing insights into diversity and function of these microbial communities.
Journal Article
The transferable resistome of biosolids—plasmid sequencing reveals carriage of clinically relevant antibiotic resistance genes
by
Shintani, Masaki
,
Yamazaki, Rin
,
Dohra, Hideo
in
Agricultural ecosystems
,
Anthropogenic Impacts
,
Anti-Bacterial Agents - pharmacology
2025
This study emphasizes the critical role of wastewater treatment plants (WWTPs) in facilitating the horizontal transfer of ARGs through biosolids. As biosolids are routinely applied to agricultural soils, their load of clinically relevant ARG content and transferability pose risks to animal and human health through plant-associated bacteria or surface water. By identifying conserved ARG-MGE associations across diverse plasmid types and WWTPs, this work highlights the global and persistent nature of resistance dissemination. These findings underscore the urgent need for sustainable management practices to limit the spread of antimicrobial-resistant bacteria (ARB) and associated ARGs in agricultural ecosystems. Ensuring safe biosolid use will contribute to combating antimicrobial resistance gene connectivity from environmental to human- or animal-associated bacteria globally.
Journal Article
Microbial degradation of sulfamethoxazole in the environment
2018
Sulfamethoxazole (SMX) is one of the most widely applied sulfonamide antibiotics in the world, which is becoming a ubiquitous pollutant in the environment. In this mini-review, the microbial degradation of SMX was briefly reviewed. The performance of the conventional wastewater treatment plants in removing SMX was provided. The microorganisms capable of degrading SMX, including mixed cultures and pure cultures, were presented. The effects of environmental conditions such as temperature, pH, initial SMX concentration, and additional carbon sources on the biodegradation of SMX were discussed. The metabolic pathways of SMX degradation were summarized. Finally, the suggestions were made for further studies.
Journal Article
Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms
2014
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.
Journal Article
Microbial mass movements
2017
Wastewater, tourism, and trade are moving microbes around the globe at an unprecedented scale For several billion years, microorganisms and the genes they carry have mainly been moved by physical forces such as air and water currents. These forces generated biogeographic patterns for microorganisms that are similar to those of animals and plants ( 1 ). In the past 100 years, humans have changed these dynamics by transporting large numbers of cells to new locations through waste disposal, tourism, and global transport and by modifying selection pressures at those locations. As a consequence, we are in the midst of a substantial alteration to microbial biogeography. This has the potential to change ecosystem services and biogeochemistry in unpredictable ways.
Journal Article
Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing
2021
Microorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.
Microbes play key roles in wastewater treatment. Here, Singleton et al. use long-read and short-read sequencing to recover 1083 high-quality metagenome-assembled genomes from 23 wastewater treatment plants, and combine this information with amplicon data, Raman microspectroscopy and FISH to reveal functionally important lineages.
Journal Article
Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes
2019
Wastewater treatment plants (WWTPs) are implicated as hotspots for the dissemination of antibacterial resistance into the environment. However, the in situ processes governing removal, persistence, and evolution of resistance genes during wastewater treatment remain poorly understood. Here, we used quantitative metagenomic and metatranscriptomic approaches to achieve a broad-spectrum view of the flow and expression of genes related to antibacterial resistance to over 20 classes of antibiotics, 65 biocides, and 22 metals. All compartments of 12 WWTPs share persistent resistance genes with detectable transcriptional activities that were comparatively higher in the secondary effluent, where mobility genes also show higher relative abundance and expression ratios. The richness and abundance of resistance genes vary greatly across metagenomes from different treatment compartments, and their relative and absolute abundances correlate with bacterial community composition and biomass concentration. No strong drivers of resistome composition could be identified among the chemical stressors analyzed, although the sub-inhibitory concentration (hundreds of ng/L) of macrolide antibiotics in wastewater correlates with macrolide and vancomycin resistance genes. Contig-based analysis shows considerable co-localization between resistance and mobility genes and implies a history of substantial horizontal resistance transfer involving human bacterial pathogens. Based on these findings, we propose future inclusion of mobility incidence (M%) and host pathogenicity of antibiotic resistance genes in their quantitative health risk ranking models with an ultimate goal to assess the biological significance of wastewater resistomes with regard to disease control in humans or domestic livestock.
Journal Article
Microalgae-based advanced municipal wastewater treatment for reuse in water bodies
by
Hu, Hong -Ying
,
Wang, Jing-Han
,
Zhang, Tian-Yuan
in
Advanced wastewater treatment
,
Algae
,
Analysis
2017
Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O
2
generation, CO
2
mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future studies on microalgae-based advanced wastewater treatment and water reuse.
Journal Article
Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp
2016
Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S
0
), carbon dioxide, and nitrogen-containing gas (such as N
2
) at NaCl concentration of 35–70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S
0
conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated
Thauera
sp. and
Halomonas
sp. as the heterotrophs and
Azoarcus
sp. being the autotrophs at high salinity condition.
Halomonas
sp. correlates with the enhanced DSR performance at high salinity.
Journal Article