Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
751 result(s) for "Waste disposal sites United States Management."
Sort by:
Garbage In, Garbage Out
Your garbage is going places you'd never imagine. What used to be sent to the local dump now may move hundreds of miles by truck and barge to its final resting place. Virtually all forms of pollution migrate, subjected to natural forces such as wind and water currents. The movement of garbage, however, is under human control. Its patterns of migration reveal much about power sharing among state, local, and national institutions, about the Constitution's protection of trash transport as a commercial activity, and about competing notions of social fairness. InGarbage In, Garbage Out,Vivian Thomson looks at Virginia's status as the second-largest importer of trash in the United States and uses it as a touchstone for exploring the many controversies around trash generation and disposal. Political conflicts over waste management have been felt at all levels of government. Local governments who want to manage their own trash have fought other local governments hosting huge landfills that depend on trash generated hundreds of miles away. State governments have tried to avoid becoming the dumping grounds for cities hundreds of miles away. The constitutional questions raised in these battles have kept interstate trash transport on Congress's agenda since the early 1990s. Whether the resulting legislative proposals actually address our most critical garbage-related problems, however, remains in question. Thomson sheds much-needed light on these problems. Within the context of increased interstate trash transport and the trend toward privatization of waste management, she examines the garbage issue from a number of perspectives--including the links between environmental justice and trash management, a critical evaluation of the theoretical and empirical relationship between economic growth and environmental improvement, and highlighting the ways in which waste management practices in the US differ from those in the European Union and Japan. Thomson then provides specific, substantive recommendations for our own policymakers. Everything eventually becomes trash. As we explore the long, often surprising, routes our garbage takes, we begin to understand that it is something more than a mere nuisance that regularly \"disappears\" from our curbside. Rather, trash generation and management reflect patterns of consumption, political choices over whether garbage is primarily pollution or commerce, the social distribution of environmental risk, and how our daily lives compare with those of our counterparts in other industrialized nations.
Assessment of the performance of engineered waste containment barriers
President Carter's 1980 declaration of a state of emergency at Love Canal, New York, recognized that residents' health had been affected by nearby chemical waste sites. The Resource Conservation and Recovery Act, enacted in 1976, ushered in a new era of waste management disposal designed to protect the public from harm. It required that modern waste containment systems use \"engineered\" barriers designed to isolate hazardous and toxic wastes and prevent them from seeping into the environment. These containment systems are now employed at thousands of waste sites around the United States, and their effectiveness must be continually monitored. Assessment of the Performance of Engineered Waste Containment Barriers assesses the performance of waste containment barriers to date. Existing data suggest that waste containment systems with liners and covers, when constructed and maintained in accordance with current regulations, are performing well thus far. However, they have not been in existence long enough to assess long-term (postclosure) performance, which may extend for hundreds of years. The book makes recommendations on how to improve future assessments and increase confidence in predictions of barrier system performance which will be of interest to policy makers, environmental interest groups, industrial waste producers, and industrial waste management industry.
Injection-Induced Earthquakes
We tend to view earthquakes as unpredictable phenomena caused by naturally shifting stresses in Earth's crust. In reality, however, a range of human activity can also induce earthquakes. Ellsworth (p. 10.1126/science.1225942 ) reviews the current understanding of the causes and mechanics of earthquakes caused by human activity and the means to decrease their associated risk. Notable examples include injection of wastewater into deep formations and emerging technologies related to oil and gas recovery, including hydraulic fracturing. In addition to directly causing increased local seismic activity, activities such as deep fluid injection may have other ramifications related to earthquake occurrence. Van der Elst et al. (p. 164 ; see the news story by Kerr ) demonstrate that in the midwestern United States, some areas with increased human-induced seismicity are also more prone to further earthquakes triggered by the seismic waves from large, remote earthquakes. Improved seismic monitoring and injection data near deep disposal sites will help to identify regions prone to remote triggering and, more broadly, suggest times when activities should, at least temporarily, be put on hold. Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.
Synthetic microfiber emissions to land rival those to waterbodies and are growing
Synthetic microfibers are found virtually everywhere in the environment, but emission pathways and quantities are poorly understood. By connecting regionalized global datasets on apparel production, use, and washing with emission and retention rates during washing, wastewater treatment, and sludge management, we estimate that 5.6 Mt of synthetic microfibers were emitted from apparel washing between 1950 and 2016. Half of this amount was emitted during the last decade, with a compound annual growth rate of 12.9%. Waterbodies received 2.9 Mt, while combined emissions to terrestrial environments (1.9 Mt) and landfill (0.6 Mt) were almost as large and are growing. Annual emissions to terrestrial environments (141.9 kt yr.sup.-1) and landfill (34.6 kt yr.sup.-1) combined are now exceeding those to waterbodies (167.2 kt yr.sup.-1). Improving access to wastewater treatment is expected to further shift synthetic microfiber emissions from waterbodies to terrestrial environments. Preventing emissions at the source would therefore be a more effective mitigation measure.
Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites
This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites’ land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.
The Minderoo-Monaco Commission on Plastics and Human Health
Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of \"fenceline\" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic
Potential Policy and Community Implications of Equitable Organic Waste, Compost, and Urban Agricultural Systems in the United States
Urban organic waste diverted from landfills for use as compost feedstock may help mitigate and adapt to the effects of our changing climate. Yet, compost produced from urban food and yard waste is often a source of contaminants harmful to human and environmental health. Efforts by multiple municipalities are increasing residential and commercial food and yard waste collection; however, finished, tested compost is typically unavailable to those contributing the waste and whose gardens would benefit. This commentary evaluates the relative equity and safety of U.S. organic waste cycles in relation to urban and peri-urban agriculture (UA) and waste stewardship. We ) explore historical structures that have led to siloed food and waste systems and ) provide recommendations to promote safer compost production from urban organic waste inputs. The engagement of intersectional partners in the creation of equitable policies and contracts that integrate food and waste justice is crucial to this work. A 15-y relationship between community, academic, and government partners in Boston, Massachusetts, has increased access to health-promoting community gardens. Historical concerns raised by gardeners resulted in improvement to the quality of compost sourced from municipal organic waste and motivated a case study of Boston and three other cities (Seattle, Washington; San Francisco, California; New York, New York). This case study provides the approaches used to source, collect, process, test, and deliver urban organic waste as compost for UA. It informed recommendations to improve the safety and equity of organic waste-to-compost cycles. Strict feedstock regulation and required compost safety testing are essential to produce safe, city-sourced compost. Balancing the needs of landfill diversion with equitable distribution to all contributors, particularly low-income and food-insecure people, will help concentrate UA benefits within marginalized communities. Adoption of a public health lens may help ensure the safety of nutrient-rich compost available for urban growers through legislation at state and local levels, along with explicit industry contracts. https://doi.org/10.1289/EHP12921.
Too Hot to Touch
Today, the issue of waste management is as prominent as reactor safety in the controversies surrounding nuclear power and is particularly topical in the US since the 2010 closure of the Yucca Mountain repository project. William and Rosemarie Alley provide an engaging and authoritative account of the controversies and possibilities surrounding disposal of nuclear waste in the US, with reference also to other countries around the world. The book tells the full history from the beginnings after World War II up to today, bringing to life the pioneering science, the political wrangling and media drama, and the not-in-my-backyard communities fighting to put waste elsewhere. Written in down-to-earth language, by an expert with key involvement in the Yucca Mountain project, this is a timely book for public interest groups, affected communities, policymakers, environmentalists and research scientists working in related fields and anyone interested in finding out more about this important issue.
Risk and Decisions about Disposition of Transuranic and High-Level Radioactive Waste
The U.S.Department of Energy (DOE) manages dozens of sites across the nation that focus on research, design, and production of nuclear weapons and nuclear reactors for defense applications.Radioactive wastes at these sites pose a national challenge, and DOE is considering how to most effectively clean them up.