Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,904 result(s) for "Waste products as fuel."
Sort by:
Turning poop into power fuel
\"Imagine stopping at a gas station, and filling your car with...poop. Fuel made from poop may sound like science fiction, but it's already science fact. This engrossingly gross book explores the powerful possibilities. We'll discover how scientists are learning to make renewable fuels from something that most people are happy to get rid of. Unlike fossil fuels, poop is cheap, it's plentiful, and it's everywhere we are. Whether it's to the store, or all the way to Mars, poop is going places\"-- Provided by publisher.
Sustainable waste management for zero waste cities in China: potential, challenges and opportunities
Abstract Waste is a valuable secondary carbon resource. In the linear economy, it is predominantly landfilled or incinerated. These disposal routes not only lead to diverse climate, environmental and societal problems; they also represent a loss of carbon resources. In a circular carbon economy, waste is used as a secondary carbon feedstock to replace fossil resources for production. This contributes to environmental protection and resource conservation. It furthermore increases a nation’s independence from imported fossil energy sources. China is at the start of its transition from a linear to circular carbon economy. It can thus draw on waste management experiences of other economies and assess the opportunities for transference to support its development of ‘zero waste cities’. This paper has three main focuses. First is an assessment of drivers for China’s zero waste cities initiative and the approaches that have been implemented to combat its growing waste crisis. Second is a sharing of Germany’s experience—a forerunner in the implementation of the waste hierarchy (reduce–reuse–recycle–recover–landfill) with extensive experience in circular carbon technologies—in sustainable waste management. Last is an identification of transference opportunities for China’s zero waste cities. Specific transference opportunities identified range from measures to promote waste prevention, waste separation and waste reduction, generating additional value via mechanical recycling, implementing chemical recycling as a recycling option before energy recovery to extending energy recovery opportunities. Waste is a valuable resource in the circular carbon economy. Germany has been a forerunner in sustainable waste management. This study identifies opportunities to apply Germany’s experiences to China’s Zero Waste Cities. Graphical Abstract Graphical Abstract
An assessment of optimizing biofuel yield percentage using K-fold integrated machine learning models for a sustainable future
Accelerating population and modernization has triggered a steady rise in energy demand and a significant rise in household waste, particularly municipal solid waste. In this context, waste-to-energy conversion has emerged as a sustainable solution. This study aims to maximize biofuel production yield using biomass-based banana peel catalyst waste by optimizing process parameters through machine learning models integrated with k-fold cross-validation. The models employed include Polynomial Regression (PR), Decision Tree (DT), Random Forest (RF), and Linear Regression (LR). The three key input variables including reaction temperature (RT), catalyst concentration (CC), and methanol-to-oil molar ratio (MOR) were used to train and test the models, with biodiesel yield as the measured output. Among the models, PR emerged as the best-performing one for predicting biofuel yield, demonstrated by its high R² value of 0.956 and low error metrics (RMSE = 1.54 MSE = 2.39 MAE = 1.43). The best model was determined through balancing bias and variance across k-fold validation iterations, where PR exhibited the highest average R² value of 0.868. Furthermore, the optimized process parameters predicted by PR for maximum biofuel yield were a RT of 59°C, CC of 2.96%, and a MOR of 9.21, resulting in a yield of 95.38%. These findings contribute to advancing large-scale machine learning-driven biofuel optimization, supporting industrial waste-to-energy applications, and fostering sustainable energy development.
Waste-to-Energy in the Circular Economy Transition and Development of Resource-Efficient Business Models
The consistent rise of the per capita waste generation rate has led to an escalation of waste quantities and the need to expand waste disposal methods. Efforts to develop clean and affordable energy systems are increasingly linked to waste-to-energy as part of the transition to a circular economy (CE). A resource-efficient waste-to-energy business model within a CE offers a variety of environmentally friendly waste management options based on their overall environmental impacts but also makes efficient use of available resources and technologies to convert different types of waste into energy, which helps reduce the adverse effects on the environment and create additional energy sources. This research aims to identify innovative waste management solutions to foster the implementation of CE and a more resource-efficient business model. The research methodology is based on qualitative and quantitative research, triangulation, material flow assessment, and systems dynamics. The value of this study is within the analysis of existing waste-to-energy plant case studies to identify a set of recommendations and appropriate business models for the countries that are at an early stage of evaluation of such facilities. This study found that waste-to-energy plants are critical to achieving the EU’s waste disposal targets by 2035. The findings highlight the importance of supporting mechanisms in the waste sector, such as structural funds, as the industry primarily focuses on societal health and safety and environmental protection, alongside resource efficiency and circularity potential.
Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision
Refuse-Derived Fuels (RDFs) are segregated forms of wastes obtained by a combined mechanical–biological processing of municipal solid wastes (MSWs). The narrower characteristics, e.g., high calorific value (18–24 MJ/kg), low moisture content (3–6%) and high volatile (77–84%) and carbon (47–56%) contents, make RDFs more suitable than MSWs for thermochemical valorization purposes. As a matter of fact, EU regulations encourage the use of RDF as a source of energy in the frameworks of sustainability and the circular economy. Pyrolysis and gasification are promising thermochemical processes for RDF treatment, since, compared to incineration, they ensure an increase in energy recovery efficiency, a reduction of pollutant emissions and the production of value-added products as chemical platforms or fuels. Despite the growing interest towards RDFs as feedstock, the literature on the thermochemical treatment of RDFs under pyrolysis and gasification conditions still appears to be limited. In this work, results on pyrolysis and gasification tests on a real RDF are reported and coupled with a detailed characterization of the gaseous, condensable and solid products. Pyrolysis tests have been performed in a tubular reactor up to three different final temperatures (550, 650 and 750 °C) while an air gasification test at 850 °C has been performed in a fluidized bed reactor using sand as the bed material. The results of the two thermochemical processes are analyzed in terms of yield, characteristics and quality of the products to highlight how the two thermochemical conversion processes can be used to accomplish waste-to-materials and waste-to-energy targets. The RDF gasification process leads to the production of a syngas with a H2/CO ratio of 0.51 and a tar concentration of 3.15 g/m3.
Innovations and techno-ecological transition
\"This book aims to present a systemic perspective to energetic transition to a discarbonated society implying an increase of energetic efficiency of current production process, new way of energy production -- integration of renewable energies, re-use of wastes. Main societal functions are analyzed in order to highlight the ongoing process of technological and non-technological innovations: transport and mobility, food, building. The purpose of this book is to analyze from a global perspective the energetic innovative system on building and to understand the limits of its development and potential new actions.\" -- Publisher's website.
Emission of Gaseous Pollutants During Combustion and Co-Combustion of Thermally Treated Municipal Solid Waste
This study shows the results of the combustion of raw and torrefied municipal solid waste. The pellets made of waste were torrefied using a rotary kiln reactor. The average solid yield was 551 g/h. The ratio of solid product mass to the raw material mass (i.e., percentage solid yield, wt%) was 78%. The combustion of the waste/coal mixtures and the torrefied waste was stable, without major problems. The unstable combustion was observed during the combustion of single waste. It was probably caused by the blocking of the portion of raw pellets in the screw feeder. A significantly lower emission of SO2 (i.e., 43–114 mg/m3 STP ref. to 6 v.% O2) was observed during the single combustion of torrefied and raw waste. Significantly higher emissions of CO and H-C were observed during the combustion of single raw and torrefied waste. This higher emission should be reduced by the optimization of air distribution.