Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
278,973 result(s) for "Water - analysis"
Sort by:
Target, suspect and non-target screening analysis from wastewater treatment plant effluents to drinking water using collision cross section values as additional identification criterion
The anthropogenic entry of organic micropollutants into the aquatic environment leads to a potential risk for drinking water resources and the drinking water itself. Therefore, sensitive screening analysis methods are needed to monitor the raw and drinking water quality continuously. Non-target screening analysis has been shown to allow for a more comprehensive investigation of drinking water processes compared to target analysis alone. However, non-target screening is challenging due to the many features that can be detected. Thus, data processing techniques to reduce the high number of features are necessary, and prioritization techniques are important to find the features of interest for identification, as identification of unknown substances is challenging as well. In this study, a drinking water production process, where drinking water is supplied by a water reservoir, was investigated. Since the water reservoir provides surface water, which is anthropogenically influenced by wastewater treatment plant (WWTP) effluents, substances originating from WWTP effluents and reaching the drinking water were investigated, because this indicates that they cannot be removed by the drinking water production process. For this purpose, ultra-performance liquid chromatography coupled with an ion-mobility high-resolution mass spectrometer (UPLC-IM-HRMS) was used in a combined approach including target, suspect and non-target screening analysis to identify known and unknown substances. Additionally, the role of ion-mobility-derived collision cross sections (CCS) in identification is discussed. To that end, six samples (two WWTP effluent samples, a surface water sample that received the effluents, a raw water sample from a downstream water reservoir, a process sample and the drinking water) were analyzed. Positive findings for a total of 60 substances in at least one sample were obtained through quantitative screening. Sixty-five percent (15 out of 23) of the identified substances in the drinking water sample were pharmaceuticals and transformation products of pharmaceuticals. Using suspect screening, further 33 substances were tentatively identified in one or more samples, where for 19 of these substances, CCS values could be compared with CCS values from the literature, which supported the tentative identification. Eight substances were identified by reference standards. In the non-target screening, a total of ten features detected in all six samples were prioritized, whereby metoprolol acid/atenolol acid (a transformation product of the two β-blockers metoprolol and atenolol) and 1,3-benzothiazol-2-sulfonic acid (a transformation product of the vulcanization accelerator 2-mercaptobenzothiazole) were identified with reference standards. Overall, this study demonstrates the added value of a comprehensive water monitoring approach based on UPLC-IM-HRMS analysis. Graphical abstract
Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review
An overview is given of existing trace analytical methods for the determination of seven popular artificial sweeteners [acesulfame (ACE), aspartame, cyclamate (CYC), neotame, neohesperidine dihydrochalcone, saccharin (SAC), and sucralose (SUC)] from aqueous environmental samples. Liquid chromatography–electrospray ionization tandem mass spectrometry and liquid chromatography–electrospray ionization high-resolution mass spectrometry are the methods most widely applied, either directly or after solid-phase extraction. Limits of detection and limits of quantification down to the low nanogram per liter range can be achieved. ACE, CYC, SAC, and SUC were detected in wastewater treatment plants in high microgram per liter concentrations. Per capita loads of individual sweeteners can vary within a wide range depending on their use in different countries. Whereas CYC and SAC are usually degraded by more than 90 % during wastewater treatment, ACE and SUC pass through wastewater treatment plants mainly unchanged. This suggests their use as virtually perfect markers for the study of the impact of wastewater on source waters and drinking waters. In finished water of drinking water treatment plants using surface-water-influenced source water, ACE and SUC were detected in concentrations up to 7 and 2.4 μg/L, respectively. ACE was identified as a precursor of oxidation byproducts during ozonation, resulting in an aldehyde intermediate and acetic acid. Although the concentrations of ACE and SUC are among the highest measured for anthropogenic trace pollutants found in surface water, groundwater, and drinking water, the levels are at least three orders of magnitude lower than organoleptic threshold values. However, ecotoxicology studies are scarce and have focused on SUC. Thus, further research is needed both on identification of transformation products and on the ecotoxicological impact of artificial sweeteners and their transformation products.
Sewer processes : microbial and chemical process engineering of sewer networks
\"This extensively revised and updated second edition presents major revisions of several chapters, reflecting the theoretical and practical knowledge that has been gained since the publication of the previous edition a decade ago. In addition, it supplies new chapters on advanced modeling of sewer processes and gas phase control. It also includes greatly expanded coverage of odor formation and prediction, as well as of concrete corrosion caused by hydrogen sulfide. The book is written for graduate students, researchers, and industry professionals\"-- Provided by publisher.
Environmental flow limits to global groundwater pumping
Groundwater is the world's largest freshwater resource and is critically important for irrigation, and hence for global food security . Already, unsustainable groundwater pumping exceeds recharge from precipitation and rivers , leading to substantial drops in the levels of groundwater and losses of groundwater from its storage, especially in intensively irrigated regions . When groundwater levels drop, discharges from groundwater to streams decline, reverse in direction or even stop completely, thereby decreasing streamflow, with potentially devastating effects on aquatic ecosystems. Here we link declines in the levels of groundwater that result from groundwater pumping to decreases in streamflow globally, and estimate where and when environmentally critical streamflows-which are required to maintain healthy ecosystems-will no longer be sustained. We estimate that, by 2050, environmental flow limits will be reached for approximately 42 to 79 per cent of the watersheds in which there is groundwater pumping worldwide, and that this will generally occur before substantial losses in groundwater storage are experienced. Only a small decline in groundwater level is needed to affect streamflow, making our estimates uncertain for streams near a transition to reversed groundwater discharge. However, for many areas, groundwater pumping rates are high and environmental flow limits are known to be severely exceeded. Compared to surface-water use, the effects of groundwater pumping are markedly delayed. Our results thus reveal the current and future environmental legacy of groundwater use.
A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs)
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are found in aquatic systems, flora, and fauna worldwide. These potentially harmful compounds are also frequently detected in Sweden and have already resulted in severe problems for public drinking water supply, i.e., some wells had to be closed due to high PFAS concentrations both in raw water and produced drinking water. Knowledge on PFAS occurrence in Sweden is still quite low, although monitoring is currently ongoing. This work describes potential sources for PFASs to enter the drinking water supply in Sweden and compares different occurrences of PFASs in raw and drinking water in the country. Moreover, the monitoring history, the legal situation, and remediation actions taken are presented. Finally, future challenges and the way forward in Sweden are discussed.
Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review
Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.
Trace metals contamination in groundwater and implications on human health: comprehensive assessment using hydrogeochemical and geostatistical methods
Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca–Mg–HCO 3 , Ca–Cl and Ca–Mg–Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
Comparison of potential drinking water source contamination across one hundred U.S. cities
Drinking water supplies of cities are exposed to potential contamination arising from land use and other anthropogenic activities in local and distal source watersheds. Because water quality sampling surveys are often piecemeal, regionally inconsistent, and incomplete with respect to unregulated contaminants, the United States lacks a detailed comparison of potential source water contamination across all of its large cities. Here we combine national-scale geospatial datasets with hydrologic simulations to compute two metrics representing potential contamination of water supplies from point and nonpoint sources for over a hundred U.S. cities. We reveal enormous diversity in anthropogenic activities across watersheds with corresponding disparities in the potential contamination of drinking water supplies to cities. Approximately 5% of large cities rely on water that is composed primarily of runoff from non-pristine lands (e.g., agriculture, residential, industrial), while four-fifths of all large cities that withdraw surface water are exposed to treated wastewater in their supplies.