Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31,019
result(s) for
"Water Pollutants, Chemical - chemistry"
Sort by:
Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects
2018
Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems.
Journal Article
Amyloid–carbon hybrid membranes for universal water purification
2016
Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.
Hybrid membranes made from protein amyloid fibrils and activated porous carbon can be used to remove heavy metal ions and radioactive waste from water.
Journal Article
Environmental fate and exposure; neonicotinoids and fipronil
by
Giorio, C
,
Simon-Delso, N
,
Krupke, C
in
Agricultural land
,
Agricultural pollution
,
Agricultural practices
2015
Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist in woody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near-treated crops. Studies of food stores in honeybee colonies from across the globe demonstrate that colonies are routinely and chronically exposed to neonicotinoids, fipronil, and their metabolites (generally in the 1–100 ppb range), mixed with other pesticides some of which are known to act synergistically with neonicotinoids. Other nontarget organisms, particularly those inhabiting soils, aquatic habitats, or herbivorous insects feeding on noncrop plants in farmland, will also inevitably receive exposure, although data are generally lacking for these groups. We summarize the current state of knowledge regarding the environmental fate of these compounds by outlining what is known about the chemical properties of these compounds, and placing these properties in the context of modern agricultural practices.
Journal Article
Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview
2019
Dyes are used in various industries as coloring agents. The discharge of dyes, specifically synthetic dyes, in wastewater represents a serious environmental problem and causes public health concerns. The implementation of regulations for wastewater discharge has forced research towards either the development of new processes or the improvement of available techniques to attain efficient degradation of dyes. Catalytic oxidation is one of the advanced oxidation processes (AOPs), based on the active radicals produced during the reaction in the presence of a catalyst. This paper reviews the problems of dyes and hydroxyl radical-based oxidation processes, including Fenton’s process, non-iron metal catalysts, and the application of thin metal catalyst-coated tubular reactors in detail. In addition, the sulfate radical-based catalytic oxidation technique has also been described. This study also includes the effects of various operating parameters such as pH, temperature, the concentration of the oxidant, the initial concentration of dyes, and reaction time on the catalytic decomposition of dyes. Moreover, this paper analyzes the recent studies on catalytic oxidation processes. From the present study, it can be concluded that catalytic oxidation processes are very active and environmentally friendly methods for dye removal.
Journal Article
Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer
2016
An alternative material to activated carbon for water remediation is reported: a porous material based on crosslinked cyclodextrins that is better than activated carbons at adsorbing a range of pharmaceuticals, pesticides and other anthropogenic pollutants.
Near-instant removal of organic micropollutants from water
Water purification and remediation is often carried out using various forms of activated carbon; it is inexpensive, but only partially removes many organic pollutants. However, regenerating activated carbon for reuse is energy intensive, requiring high temperatures, and performance decreases upon recycling. Now William Dichtel, Damian Helbling and colleagues have developed an alternative to activated carbon for water remediation: a high-surface-area, mesoporous polymer of β-cyclodextrin. Not only does the material outperform activated carbons at adsorbing a range of pharmaceuticals, pesticides and other pollutants, but it is easily regenerated by washing at room temperature.
The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health
1
,
2
,
3
,
4
,
5
. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours)
6
,
7
and poor removal of many relatively hydrophilic micropollutants
8
. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500–900 degrees Celsius) and does not fully restore performance
9
,
10
. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption
11
. β-cyclodextrin is known to encapsulate pollutants to form well-defined host–guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons
11
,
12
,
13
. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials
7
,
8
,
11
,
12
,
13
. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
Journal Article
Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review
by
Mastorgio, Andrea Filippo
,
Sezenna, Elena
,
Saponaro, Sabrina
in
adverse effects
,
Animals
,
Aquatic ecosystems
2015
Contaminants of emerging concern (CECs) are not commonly monitored in the environment, but they can enter the environment from a variety of sources. The most worrying consequence of their wide use and environmental diffusion is the increase in the possible exposure pathways for humans. Moreover, knowledge of their behavior in the environment, toxicity, and biological effects is limited or not available for most CECs. The aim of this work is to edit the state of the art on few selected CECs having the potential to enter the soil and aquatic systems and cause adverse effects in humans, wildlife, and the environment: bisphenol A (BPA), nonylphenol (NP), benzophenones (BPs), and benzotriazole (BT). Some reviews are already available on BPA and NP, reporting about their behavior in surface water and sediments, but scarce and scattered information is available about their presence in soil and groundwater. Only a few studies are available about BPs and BT in the environment, in particular in soil and groundwater. This work summarizes the information available in the literature about the incidence and behavior of these compounds in the different environmental matrices and food. In particular, the review focuses on the physical-chemical properties, the environmental fate, the major degradation byproducts, and the environmental evidence of the selected CECs.
Journal Article
Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments
by
da Silva Alves, Daniele C.
,
Pinto, Luiz A. de Almeida
,
Breslin, Carmel B.
in
adsorbent
,
Adsorbents
,
Adsorption
2021
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Journal Article
The plastic brain: neurotoxicity of micro- and nanoplastics
by
Meijer, Jonelle
,
Prüst, Minne
,
Westerink, Remco H. S.
in
Acetylcholinesterase
,
Acetylcholinesterase inhibition
,
Animals
2020
Given the global abundance and environmental persistence, exposure of humans and (aquatic) animals to micro- and nanoplastics is unavoidable. Current evidence indicates that micro- and nanoplastics can be taken up by aquatic organism as well as by mammals. Upon uptake, micro- and nanoplastics can reach the brain, although there is limited information regarding the number of particles that reaches the brain and the potential neurotoxicity of these small plastic particles.
Earlier studies indicated that metal and metal-oxide nanoparticles, such as gold (Au) and titanium dioxide (TiO
2
) nanoparticles, can also reach the brain to exert a range of neurotoxic effects. Given the similarities between these chemically inert metal(oxide) nanoparticles and plastic particles, this review aims to provide an overview of the reported neurotoxic effects of micro- and nanoplastics in different species and in vitro. The combined data, although fragmentary, indicate that exposure to micro- and nanoplastics can induce oxidative stress, potentially resulting in cellular damage and an increased vulnerability to develop neuronal disorders. Additionally, exposure to micro- and nanoplastics can result in inhibition of acetylcholinesterase activity and altered neurotransmitter levels, which both may contribute to the reported behavioral changes.
Currently, a systematic comparison of the neurotoxic effects of different particle types, shapes, sizes at different exposure concentrations and durations is lacking, but urgently needed to further elucidate the neurotoxic hazard and risk of exposure to micro- and nanoplastics.
Journal Article
Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress
2013
Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm) and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.
Journal Article
Coagulation Treatment of Wastewater: Kinetics and Natural Coagulant Evaluation
by
Precious Sibiya, Nomthandazo
,
Rathilal, Sudesh
,
Kweinor Tetteh, Emmanuel
in
alum
,
Alum Compounds - chemistry
,
coagulation kinetics
2021
In this study, three coagulants (ferromagnetite (F), alum (A), and eggshells (E)) and their hybrids (FA, FE, and FEA) were investigated as possible cost-effective coagulants for the treatment of industrial wastewater. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to characterize the morphological and elemental compositions of the coagulants. The effects of coagulant dosage (10–60 mg/L) and settling time were investigated for the removal of turbidity, color, and total suspended solids. A jar tester (JTL6) operating at conditions of 150 rpm for 2 min (rapid mixing) and 30 rpm for 15 min (slow mixing) was employed. Results from the characterized supernatant showed about 80% removal of the contaminants. The prospects of F were proven to be the most effective as compared to the binary (FA > FE) and the ternary hybridized (FEA) coagulants. At an optimum dosage and settling time of 20 mg/L and 30 min, respectively, the treatability performance of F was clearly proven to be viable for wastewater treatment.
Journal Article