Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
6,308 result(s) for "Water Supply - statistics "
Sort by:
The hazards of urban life in late Stalinist Russia : health, hygiene, and living standards, 1943-1953
\"This is the first detailed study of the standard of living of ordinary Russians following World War II. It examines urban living conditions under the Stalinist regime with a focus on the key issues of sanitation, access to safe water supplies, personal hygiene and anti-epidemic controls, diet and nutrition, and infant mortality. Comparing five key industrial regions, it shows that living conditions still lagged some fifty years behind Western European norms. Yet, despite this, the book reveals that the years preceding Stalin's death saw dramatic improvements in mortality rates thanks to the application of rigorous public health controls and Western medical innovations. While tracing these changes, the book also analyzes the impact that the absence of an adequate urban infrastructure had on peoples' daily lives and on the relationship between the Stalinist regime and the Russian people and, finally, how the Soviet experience compared to that of earlier industrializing societies\"--Provided by publisher.
The water footprint of humanity
This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (gray WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agricultural and industrial commodities. The global annual average WF in the period 1996-2005 was 9,087 Gm³ /y (74% green, 11% blue, 15% gray). Agricultural production contributes 92%. About one-fifth of the global WF relates to production for export. The total volume of international virtual water flows related to trade in agricultural and industrial products was 2,320 Gm³ /y (68% green, 13% blue, 19% gray). The WF of the global average consumer was 1,385 m³ /y. The average consumer in the United States has a WF of 2,842 m³ /y, whereas the average citizens in China and India have WFs of 1,071 and 1,089 m³ /y, respectively. Consumption of cereal products gives the largest contribution to the WF of the average consumer (27%), followed by meat (22%) and milk products (7%). The volume and pattern of consumption and the WF per ton of product of the products consumed are the main factors determining the WF of a consumer. The study illustrates the global dimension of water consumption and pollution by showing that several countries heavily rely on foreign water resources and that many countries have significant impacts on water consumption and pollution elsewhere.
Groundwater depletion embedded in international food trade
Global food consumption drives irrigation for crops, which depletes aquifers in some regions; here we quantify the volumes of groundwater depletion associated with global food production and international trade. International food trade causes water depletion (Dalin 21403, Phys Letter) International trade is increasingly transporting 'hidden' resources and environmental factors from one country to another. For example, the water used to produce a spear of asparagus eaten in London might come from irrigation in South America. Similarly, pollution generated in China might be traceable to consumer demand in the United States. Carole Dalin et al . now extend this idea to the non-renewable groundwater that is consumed for agricultural trade. They find that 11 per cent of groundwater extraction is linked to agricultural trade, with Pakistan, the United States and India accounting for two-thirds of the global totals. The research reveals the degree to which food consumption in one country can lead to groundwater depletion in others, highlighting the need to better consider issues of sustainability and equity in the international food trade. Recent hydrological modelling 1 and Earth observations 2 , 3 have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation 1 , 2 , 4 , but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.
Rapid groundwater decline and some cases of recovery in aquifers globally
Groundwater resources are vital to ecosystems and livelihoods. Excessive groundwater withdrawals can cause groundwater levels to decline 1 – 10 , resulting in seawater intrusion 11 , land subsidence 12 , 13 , streamflow depletion 14 – 16 and wells running dry 17 . However, the global pace and prevalence of local groundwater declines are poorly constrained, because in situ groundwater levels have not been synthesized at the global scale. Here we analyse in situ groundwater-level trends for 170,000 monitoring wells and 1,693 aquifer systems in countries that encompass approximately 75% of global groundwater withdrawals 18 . We show that rapid groundwater-level declines (>0.5 m year −1 ) are widespread in the twenty-first century, especially in dry regions with extensive croplands. Critically, we also show that groundwater-level declines have accelerated over the past four decades in 30% of the world’s regional aquifers. This widespread acceleration in groundwater-level deepening highlights an urgent need for more effective measures to address groundwater depletion. Our analysis also reveals specific cases in which depletion trends have reversed following policy changes, managed aquifer recharge and surface-water diversions, demonstrating the potential for depleted aquifer systems to recover. Analysis of about 170,000 monitoring wells and 1,693 aquifer systems worldwide shows that extensive and often accelerating groundwater declines are widespread in the twenty-first century, but that groundwater levels are recovering in some cases.
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of risk factor exposure and attributable burden of disease. By providing estimates over a long time series, this study can monitor risk exposure trends critical to health surveillance and inform policy debates on the importance of addressing risks in context. We used the comparative risk assessment framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2016. This study included 481 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk (RR) and exposure estimates from 22 717 randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources, according to the GBD 2016 source counting methods. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. Finally, we explored four drivers of trends in attributable burden: population growth, population ageing, trends in risk exposure, and all other factors combined. Since 1990, exposure increased significantly for 30 risks, did not change significantly for four risks, and decreased significantly for 31 risks. Among risks that are leading causes of burden of disease, child growth failure and household air pollution showed the most significant declines, while metabolic risks, such as body-mass index and high fasting plasma glucose, showed significant increases. In 2016, at Level 3 of the hierarchy, the three leading risk factors in terms of attributable DALYs at the global level for men were smoking (124·1 million DALYs [95% UI 111·2 million to 137·0 million]), high systolic blood pressure (122·2 million DALYs [110·3 million to 133·3 million], and low birthweight and short gestation (83·0 million DALYs [78·3 million to 87·7 million]), and for women, were high systolic blood pressure (89·9 million DALYs [80·9 million to 98·2 million]), high body-mass index (64·8 million DALYs [44·4 million to 87·6 million]), and high fasting plasma glucose (63·8 million DALYs [53·2 million to 76·3 million]). In 2016 in 113 countries, the leading risk factor in terms of attributable DALYs was a metabolic risk factor. Smoking remained among the leading five risk factors for DALYs for 109 countries, while low birthweight and short gestation was the leading risk factor for DALYs in 38 countries, particularly in sub-Saharan Africa and South Asia. In terms of important drivers of change in trends of burden attributable to risk factors, between 2006 and 2016 exposure to risks explains an 9·3% (6·9–11·6) decline in deaths and a 10·8% (8·3–13·1) decrease in DALYs at the global level, while population ageing accounts for 14·9% (12·7–17·5) of deaths and 6·2% (3·9–8·7) of DALYs, and population growth for 12·4% (10·1–14·9) of deaths and 12·4% (10·1–14·9) of DALYs. The largest contribution of trends in risk exposure to disease burden is seen between ages 1 year and 4 years, where a decline of 27·3% (24·9–29·7) of the change in DALYs between 2006 and 2016 can be attributed to declines in exposure to risks. Increasingly detailed understanding of the trends in risk exposure and the RRs for each risk-outcome pair provide insights into both the magnitude of health loss attributable to risks and how modification of risk exposure has contributed to health trends. Metabolic risks warrant particular policy attention, due to their large contribution to global disease burden, increasing trends, and variable patterns across countries at the same level of development. GBD 2016 findings show that, while it has huge potential to improve health, risk modification has played a relatively small part in the past decade. The Bill & Melinda Gates Foundation, Bloomberg Philanthropies.
Global water resources affected by human interventions and climate change
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.
Water balance of global aquifers revealed by groundwater footprint
A newly developed concept called ‘groundwater footprint’ is used to reveal the degree of sustainable use of global aquifers by calculating the area relative to the extractive demands; globally, this footprint exceeds aquifer area by a factor of about 3.5, and excess withdrawal is centred on just a few agriculturally important aquifers. Striking a balance on groundwater usage In many parts of the world, groundwater is being extracted for agricultural use and human consumption at a greater rate than the Earth's natural systems can replace it. Tom Gleeson and colleagues estimate the true scale of the problem using a newly developed concept called the 'groundwater footprint' — defined as the area required to sustain groundwater use and groundwater-dependent ecosystem services. The authors find that globally, the groundwater footprint exceeds the aquifer area by a factor of about 3.5. Overexploitation centres predominantly on a few agriculturally important aquifers in arid or semiarid climates, especially in Asia and North America. The groundwater footprint could serve as a useful framework for analysing the global groundwater depletion data sets emerging from NASA's GRACE satellites. Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems 1 , 2 . Most assessments of global water resources have focused on surface water 3 , 4 , 5 , 6 , but unsustainable depletion of groundwater has recently been documented on both regional 7 , 8 and global scales 9 , 10 , 11 . It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations 12 , 13 , 14 , and be used to assess the potential for increasing agricultural yields with renewable groundwaterref 15 . The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.
Evidence of human influence on Northern Hemisphere snow loss
Documenting the rate, magnitude and causes of snow loss is essential to benchmark the pace of climate change and to manage the differential water security risks of snowpack declines 1 – 4 . So far, however, observational uncertainties in snow mass 5 , 6 have made the detection and attribution of human-forced snow losses elusive, undermining societal preparedness. Here we show that human-caused warming has caused declines in Northern Hemisphere-scale March snowpack over the 1981–2020 period. Using an ensemble of snowpack reconstructions, we identify robust snow trends in 82 out of 169 major Northern Hemisphere river basins, 31 of which we can confidently attribute to human influence. Most crucially, we show a generalizable and highly nonlinear temperature sensitivity of snowpack, in which snow becomes marginally more sensitive to one degree Celsius of warming as climatological winter temperatures exceed minus eight degrees Celsius. Such nonlinearity explains the lack of widespread snow loss so far and augurs much sharper declines and water security risks in the most populous basins. Together, our results emphasize that human-forced snow losses and their water consequences are attributable—even absent their clear detection in individual snow products—and will accelerate and homogenize with near-term warming, posing risks to water resources in the absence of substantial climate mitigation. Snowpack reconstructions for major river basins in the Northern Hemisphere reveal that the snowpack has declined in almost half of the basins, with roughly one-third of the declines attributable to human-induced warming.
Asia’s shrinking glaciers protect large populations from drought stress
About 800 million people depend in part on meltwater from the thousands of glaciers in the high mountains of Asia. Water stress makes this region vulnerable to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that seasonal glacier meltwater is equivalent to the basic needs of 221 ± 59 million people, or most of the annual municipal and industrial needs of Pakistan, Afghanistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus, Aral and Chu/Issyk-Kul river basins. This reduces the risk of social instability, conflict and sudden migrations triggered by water scarcity, which is already associated with the large, rapidly growing populations and hydro-economies of these basins. Regional meltwater production is, however, unsustainably high—at 1.6 times the balance rate—and is expected to increase in future decades before ultimately declining. These results update and reinforce a previous publication in Nature on this topic, which was retracted after an inadvertent error was discovered. Glaciers in the high mountains of Asia provide a uniquely drought-resilient source of water, supplying summer meltwater sufficient for the basic needs of around 200 million people.
Multimodel assessment of water scarcity under climate change
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.