Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,002
result(s) for
"Water resources development Data processing."
Sort by:
GIS and geocomputation for water resource science and engineering
by
Dixon, Barnali
,
Uddameri, Venkatesh
in
Geographic information systems
,
Geographic information systems - Industrial applications
,
SCIENCE
2016,2015
GIS and Geocomputation for Water Resource Science and Engineering not only provides a comprehensive introduction to the fundamentals of geographic information systems but also demonstrates how GIS and mathematical models can be integrated to develop spatial decision support systems to support water resources planning, management and engineering. The book uses a hands-on active learning approach to introduce fundamental concepts and numerous case-studies are provided to reinforce learning and demonstrate practical aspects. The benefits and challenges of using GIS in environmental and water resources fields are clearly tackled in this book, demonstrating how these technologies can be used to harness increasingly available digital data to develop spatially-oriented sustainable solutions. In addition to providing a strong grounding on fundamentals, the book also demonstrates how GIS can be combined with traditional physics-based and statistical models as well as information-theoretic tools like neural networks and fuzzy set theory.
Information Needs for Water Management
2014,2015
This book provides the necessary elements to determine exactly what information should be collected to make the collected information relevant for policy makers. It highlights the dissatisfaction of information users about the information they get and the reasons for this dissatisfaction. It also discusses general issues around the role and use of information in policy making. The text then describes the how to develop a full understanding of the policy makers' information needs and will describe how policy makers can be included in the process. Finally, the book describes how the results from this process are input for the information production process.
The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe
2017
Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.
Journal Article
The global water resources and use model WaterGAP v2.2d: model description and evaluation
2021
WaterGAP is a global hydrological model that quantifies human use of groundwater and surface water as well as water flows and water storage and thus water resources on all land areas of the Earth. Since 1996, it has served to assess water resources and water stress both historically and in the future, in particular under climate change. It has improved our understanding of continental water storage variations, with a focus on overexploitation and depletion of water resources. In this paper, we describe the most recent model version WaterGAP 2.2d, including the water use models, the linking model that computes net abstractions from groundwater and surface water and the WaterGAP Global Hydrology Model (WGHM). Standard model output variables that are freely available at a data repository are explained. In addition, the most requested model outputs, total water storage anomalies, streamflow and water use, are evaluated against observation data. Finally, we show examples of assessments of the global freshwater system that can be achieved with WaterGAP 2.2d model output.
Journal Article
Global Sustainable Water Management: A Systematic Qualitative Review
by
Manivasagam, V. S
,
Cibin, Raj
,
Pushpalatha, Raji
in
Agriculture
,
Anthropogenic factors
,
Aquifers
2023
Water quality and quantity decline due to anthropogenic factors and climate change, affecting 2.3 billion people in water-scarce areas, of whom 733 million reside in Asia, Africa, and Latin America. Therefore, this review paper examined sustainable global water management by focussing on four sustainable development goal (SDG #6) indicators, including water use efficiency in agriculture, integrated water management, transboundary water cooperation, and water user participation. The review covered articles from 2016 to 2023, using Scopus and Web of Science databases with specific selection criteria. A total of 216 sources were downloaded, and after data screening, 72 articles were analysed along with additional supplementary materials such as books, conference papers, and United Nations documents. The finding indicates emerging trends in sustainable water management for agriculture, including water-efficient technologies like alternate wetting and drying, drip irrigation, mulching, etc. However, careful implementation is required to address environmental concerns, prevent water pollution, minimise yield reductions, and ensure long-term sustainability. Moreover, integrated water resource management has faced challenges in practical implementation due to governance structures, economic circumstances, cooperation, and collaboration among stakeholders. While over 600 treaties aim to promote international water cooperation, only a few have been effective. In addition, out of 500 transboundary groundwater sources shared by countries, only six have dedicated treaties to govern their use. Thus, clearly defined rights, responsibilities, and sustainable management practises for each shared aquifer would foster the sustainability of these resources. Moreover, engaging communities through inclusive policies, dialogue, and empowerment is vital for sustainable water management. Investment in community education and capacity-building fosters transformative change and addresses global water management challenges, securing the future of precious water resources.
Journal Article
Examination of the spatial-temporal variations in terrestrial water reserves and green efficiency of water resources in China’s three northeastern provinces
2025
Using technological advancements and analyzing urban water consumption patterns, this article employs GRACE satellite data and statistical records to conduct a comprehensive assessment and evaluation of water resource utilization efficiency across 34 prefecture-level cities in China’s three northeastern provinces—Liaoning, Jilin, and Heilongjiang—over the period spanning from 2003 to 2020. By utilizing the sophisticated Super-SBM model, the study delves into the spatial and temporal variations in terrestrial water reserves and green water usage efficiency. Additionally, the Tobit model is introduced to investigate the influencing factors of water resource utilization efficiency. The primary findings of the study are outlined below: The spatial distribution of terrestrial water resources in the three northeastern provinces reveals a clear north-south gradient, with abundant resources in the northern regions and scarcity in the southern parts. Seasonal fluctuations, albeit present, are relatively modest, with higher water storage levels typically observed in spring and summer, and lower levels in autumn and winter. Regarding the static water use efficiency among the 34 prefecture-level cities, Panjin stands out with the highest efficiency, whereas Qiqihar ranks lowest. Notably, 91.18% of the cities exhibit medium to high efficiency levels, reflecting commendable performance in water utilization throughout the region. Almost half of the cities have experienced an improvement in their water use efficiency compared to the previous year, signaling a gradual enhancement in water utilization capabilities. The average total factor productivity across the three northeastern provinces stands at 1.012, representing an annual growth rate of 1.2%. The efficiency of water resource utilization in these provinces is intricately linked to the technological progress index. To enhance water resource utilization efficiency, it is imperative to introduce advanced technologies, increase research investments, and foster technological advancements.
Journal Article
Evolution of the global virtual water trade network
by
Dalin, Carole
,
Hanasaki, Naota
,
Konar, Megan
in
Agricultural commodities
,
Agriculture
,
Agriculture - economics
2012
Global freshwater resources are under increasing pressure from economic development, population growth, and climate change. The international trade of water-intensive products (e.g., agricultural commodities) or virtual water trade has been suggested as a way to save water globally. We focus on the virtual water trade network associated with international food trade built with annual trade data and annual modeled virtual water content. The evolution of this network from 1986 to 2007 is analyzed and linked to trade policies, socioeconomic circumstances, and agricultural efficiency. We find that the number of trade connections and the volume of water associated with global food trade more than doubled in 22 years. Despite this growth, constant organizational features were observed in the network. However, both regional and national virtual water trade patterns significantly changed. Indeed, Asia increased its virtual water imports by more than 170%, switching from North America to South America as its main partner, whereas North America oriented to a growing intraregional trade. A dramatic rise in China's virtual water imports is associated with its increased soy imports after a domestic policy shift in 2000. Significantly, this shift has led the global soy market to save water on a global scale, but it also relies on expanding soy production in Brazil, which contributes to deforestation in the Amazon. We find that the international food trade has led to enhanced savings in global water resources over time, indicating its growing efficiency in terms of global water use.
Journal Article
Research on soil moisture prediction model based on deep learning
by
Zhang, Xin
,
Cai, Yu
,
Zhangzhong, Lili
in
Accuracy
,
Agricultural engineering
,
Agricultural Irrigation
2019
Soil moisture is one of the main factors in agricultural production and hydrological cycles, and its precise prediction is important for the rational use and management of water resources. However, soil moisture involves complex structural characteristics and meteorological factors, and it is difficult to establish an ideal mathematical model for soil moisture prediction. Existing prediction models have problems such as prediction accuracy, generalization, and multi-feature processing capability, and prediction performance must improve. Based on this, taking the Beijing area as the research object, the deep learning regression network (DNNR) with big data fitting capability was proposed to construct a soil moisture prediction model. By integrating the dataset, analyzing the time series of the predictive variables, and clarifying the relationship between features and predictive variables through the Taylor diagram, selected meteorological parameters can provide effective weights for moisture prediction. Test results prove that the deep learning model is feasible and effective for soil moisture prediction. Its' good data fitting and generalization capability can enrich the input characteristics while ensuring high accuracy in predicting the trends and values of soil moisture data and provides an effective theoretical basis for water-saving irrigation and drought control.
Journal Article
Arizona Groundwater Explorer: interactive maps for evaluating the historical and current groundwater conditions in wells in Arizona, USA
2024
Groundwater is an important water source in Arizona, accounting for about 41% of water use in this mostly arid-to-semiarid state in the southwestern United States, and the availability of groundwater resources in the state is a concern. To provide accessible information from depth-to-groundwater data, a series of web-based interactive maps were developed, called the Arizona Groundwater Explorer (AGEx). Scripts were written to harmonize and synthesize groundwater datasets from the two largest publicly available sources, subset these data to address different groundwater availability questions, and display the results in online, interactive maps. The combined dataset contained 1,820,122 depth-to-groundwater measurements from 1891 through 2022 from 41,918 wells in Arizona. Data views are provided for 20 topics, including recent (2020 or later) depth to groundwater (4,569 wells), historical (pre-1950) depth to groundwater (4,287 wells), wells with long-term (≥50 years) records (1,183 wells), wells with recent groundwater level decline (277 wells), wells with recent groundwater level rise (120 wells), and linear trends in groundwater levels over ten 10-year periods (number of wells ranging from 341 in 1978–1987 to 1,208 in 2003–2012), among others. With ongoing drought in the region resulting in declining surface-water supplies in Arizona, groundwater may play an even larger role in satisfying water needs in the state. The AGEx series of maps provides a nonspecialist audience with an improved understanding of historical, current, and changes in groundwater levels in Arizona.
Journal Article