Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,819
result(s) for
"Water stratification"
Sort by:
The response of water column and sedimentary environments to the advent of the Messinian salinity crisis: insights from an onshore deep-water section (Govone, NW Italy)
by
Natalicchio, Marcello
,
Gier, Susanne
,
Birgel, Daniel
in
Abyssal plains
,
Abyssal zone
,
Archives
2021
During Messinian time, the Mediterranean underwent hydrological modifications culminating 5.97 Ma ago with the Messinian salinity crisis (MSC). Evaporite deposition and alleged annihilation of most marine eukaryotes were taken as evidence of the establishment of basin-wide hypersalinity followed by desiccation. However, the palaeoenvironmental conditions during the MSC are still a matter of debate, chiefly because most of its sedimentary record is buried below the abyssal plains of the present-day Mediterranean Sea. To shed light on environmental change at the advent and during the early phase of the MSC, we investigated the Govone section from the Piedmont Basin (NW Italy) using a multidisciplinary approach (organic geochemical, petrographic, and carbon and oxygen stable isotope analyses). The Govone section archives the onset of the crisis in a succession of organic-rich shales and dolomite-rich marls. The MSC part of the succession represents the deep-water equivalent of sulphate evaporites deposited at the basin margins during the first phase of the crisis. Our study reveals that the onset of the MSC was marked by the intensification of water-column stratification, rather than the establishment of widespread hypersaline conditions. A chemocline divided the water column into an oxygen-depleted, denser and more saline bottom layer and an oxygenated, upper seawater layer influenced by freshwater inflow. Vertical oscillations of the chemocline controlled the stratigraphic architecture of the sediments pertaining to the first stage of the MSC. Accordingly, temporal and spatial changes of water masses with different redox chemistries must be considered when interpreting the MSC event.
Journal Article
Widespread deoxygenation of temperate lakes
by
Hambright, K. David
,
National Science Foundation (NSF)11373271702991163870417542651761805US Fulbright Student grantGerman Research Foundation (DFG)AD 91/22-1Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Research ChairsProvince of SaskatchewanQueen's University BelfastMissouri Department of Natural ResourcesMissouri Agricultural Experiment StationNational Science Foundation (NSF)17542761950170Miami University Eminent Scholar FundEuropean Commission791812University of NevadaUC DavisUniversity of Warmia and Mazury in OlsztynRussian Science Foundation (RSF)19-77-30004Oklahoma Department of Wildlife ConservationOklahoma Water Resources BoardUnited States Department of DefenseCity of TulsaERDF/ESF project Biomanipulation as a tool for improving water quality of dam reservoirsCZ.02.1.01/0.0/0.0/16_025/0007417FA-UNIMIBUK Research & Innovation (UKRI)Natural Environment Research Council (NERC)International Commission for the Protection of Italian-Swiss Waters (CIPAIS)LT
in
631/158/2445
,
704/158/2445
,
704/286
2021
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity(1,2), nutrient biogeochemistry(3), greenhouse gas emissions(4), and the quality of drinking water(5). The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity(6,7), but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification(8,9) or oxygen may increase as a result of enhanced primary production(10). Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans(6,7) and could threaten essential lake ecosystem services(2,3,5,11).
Journal Article
Temporal and spatial characteristics of potential energy anomaly in Lake Taihu
by
Ren, Yan
,
Wang, Julian X. L.
,
Zhao, Qiaohua
in
Algae
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2018
In this study, water temperature and meteorological data in Lake Taihu from June 11 to July 6, 2013, are collected to calibrate and verify the unstructured grid finite-volume community ocean model (FVCOM) coupled with a heat exchange module. The spatial and temporal variations of potential energy anomalies (PEA) in the lake, simulated by the calibrated FVCOM, are analyzed to explore the stratification and de-stratification processes in water body. The temporal variation of PEA primarily follows the diurnal cycles of solar radiation, while the spatial heterogeneity of PEA is jointly determined by solar radiation and vertical shear of horizontal velocity coupled with the topography of the lake. The maxima of PEA in the lake are not greater than 4 J/m
3
in the summer and even smaller along shore regions and near the Pingtaishan station. This study is helpful to improve understanding of the effect of physical processes on the algae bloom in Lake Taihu.
Journal Article
Increasing ocean stratification over the past half-century
by
Li Guancheng
,
Zhu, Jiang
,
Mann, Michael E
in
Brunt-vaisala frequency
,
Confidence intervals
,
Density
2020
Seawater generally forms stratified layers with lighter waters near the surface and denser waters at greater depth. This stable configuration acts as a barrier to water mixing that impacts the efficiency of vertical exchanges of heat, carbon, oxygen and other constituents. Previous quantification of stratification change has been limited to simple differencing of surface and 200-m depth changes and has neglected the spatial complexity of ocean density change. Here, we quantify changes in ocean stratification down to depths of 2,000 m using the squared buoyancy frequency N2 and newly available ocean temperature/salinity observations. We find that stratification globally has increased by a substantial 5.3% [5.0%, 5.8%] in recent decades (1960–2018) (the confidence interval is 5–95%); a rate of 0.90% per decade. Most of the increase (~71%) occurred in the upper 200 m of the ocean and resulted largely (>90%) from temperature changes, although salinity changes play an important role locally.Seawater properties—temperature, salinity and density—cause stratification of the water column, limiting vertical exchange. Considering down to 2,000 m, ocean stratification is shown to have increased ~5.3% since 1960, with ~71% of the change occurring in the upper 200 m primarily from warming.
Journal Article
Reviews and syntheses: Dams, water quality and tropical reservoir stratification
by
Calamita, Elisa
,
Winton, Robert Scott
,
Wehrli, Bernhard
in
Anoxia
,
Anoxic sediments
,
Baseline studies
2019
The impact of large dams is a popular topic in environmental science, but the importance of altered water quality as a driver of ecological impacts is often missing from such discussions. This is partly because information on the relationship between dams and water quality is relatively sparse and fragmentary, especially for low-latitude developing countries where dam building is now concentrated. In this paper, we review and synthesize information on the effects of damming on water quality with a special focus on low latitudes. We find that two ultimate physical processes drive most water quality changes: the trapping of sediments and nutrients, and thermal stratification in reservoirs. Since stratification emerges as an important driver and there is ambiguity in the literature regarding the stratification behavior of water bodies in the tropics, we synthesize data and literature on the 54 largest low-latitude reservoirs to assess their mixing behavior using three classification schemes. Direct observations from literature as well as classifications based on climate and/or morphometry suggest that most, if not all, low-latitude reservoirs will stratify on at least a seasonal basis. This finding suggests that low-latitude dams have the potential to discharge cooler, anoxic deep water, which can degrade downstream ecosystems by altering thermal regimes or causing hypoxic stress. Many of these reservoirs are also capable of efficient trapping of sediments and bed load, transforming or destroying downstream ecosystems, such as floodplains and deltas. Water quality impacts imposed by stratification and sediment trapping can be mitigated through a variety of approaches, but implementation often meets physical or financial constraints. The impending construction of thousands of planned low-latitude dams will alter water quality throughout tropical and subtropical rivers. These changes and associated environmental impacts need to be better understood by better baseline data and more sophisticated predictors of reservoir stratification behavior. Improved environmental impact assessments and dam designs have the potential to mitigate both existing and future potential impacts.
Journal Article
Response of water temperatures and stratification to changing climate in three lakes with different morphometry
2017
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911–2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
Journal Article
Ecological Constraints of Plankton Bio-Indicators for Water Column Stratification and Productivity: A Case Study of the Holocene North Aegean Sedimentary Record
by
Koskeridou, Efterpi
,
Giamali, Christina
,
Kontakiotis, George
in
Analysis
,
Archives & records
,
Calcium
2021
This study presents novel findings on the drivers of the calcitic planktonic foraminiferal and aragonitic pteropod Holocene assemblages of the North Aegean Trough (northeastern Mediterranean), an area recording the interaction between dynamic water masses as they exchange between the northern and southern Mediterranean sub-basins. Both of these groups of microorganisms are the major producers of calcium carbonate in the ocean, and are particularly sensitive to climate and oceanographic changes over the late Quaternary. Downcore micropaleontological data from the gravity core AEX-15, supplemented with multivariate statistical Q-mode cluster and principal component analyses (PCA) results, provide significant insights on the water column dynamics during the Holocene. Focusing on the last ~10 calibrated thousands of years before the present day (ka cal BP), our integrated study reveals that primary productivity is the dominant factor controlling the planktonic foraminifera distribution in the North Aegean Sea, whereas water column stratification, and particularly the intensity of the oxygen minimum zone, seems to be the major driver on the pteropod distribution. Besides productivity and thermal stratification, which show the highest explanatory power for planktonic foraminifera and pteropod communities, respectively, though they affect both groups to a different extent, upwelling seems to further affect both faunal groups. Overall, our findings are consistent with those derived by published late Quaternary eastern Mediterranean records, highlighting in parallel a useful additional dimension on planktonic foraminiferal and pteropod ecology, which is inextricably linked with the factors of primary productivity and vertical stratification of the warm Holocene water column.
Journal Article
Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes
2021
Most of Earth’s fresh surface water is consolidated in just a few of its largest lakes, and because of their unique response to environmental conditions, lakes have been identified as climate change sentinels. While the response of lake surface water temperatures to climate change is well documented from satellite and summer in situ measurements, our understanding of how water temperatures in large lakes are responding at depth is limited, as few large lakes have detailed long-term subsurface observations. We present an analysis of three decades of high frequency (3-hourly and hourly) subsurface water temperature data from Lake Michigan. This unique data set reveals that deep water temperatures are rising in the winter and provides precise measurements of the timing of fall overturn, the point of minimum temperature, and the duration of the winter cooling period. Relationships from the data show a shortened winter season results in higher subsurface temperatures and earlier onset of summer stratification. Shifts in the thermal regimes of large lakes will have profound impacts on the ecosystems of the world’s surface freshwater.
This study presents hourly data from a thermistor string in Lake Michigan, inspecting its response at depth to surface warming. Based on the data, the study suggests bottom lake temperatures respond to changes in turnover and re-stratification, with the ultimate possibility of the lake shifting from dimictic to monomictic.
Journal Article
Surface stratification determines the interfacial water structure of simple electrolyte solutions
by
Chiang, Kuo-Yang
,
Nagata, Yuki
,
Seki, Takakazu
in
639/638/542/971
,
639/638/563/981
,
Analytical Chemistry
2024
The distribution of ions at the air/water interface plays a decisive role in many natural processes. Several studies have reported that larger ions tend to be surface-active, implying ions are located on top of the water surface, thereby inducing electric fields that determine the interfacial water structure. Here we challenge this view by combining surface-specific heterodyne-detected vibrational sum-frequency generation with neural network-assisted ab initio molecular dynamics simulations. Our results show that ions in typical electrolyte solutions are, in fact, located in a subsurface region, leading to a stratification of such interfaces into two distinctive water layers. The outermost surface is ion-depleted, and the subsurface layer is ion-enriched. This surface stratification is a key element in explaining the ion-induced water reorganization at the outermost air/water interface.
The organization of electrolytes at the air/water interface affects the structure of interfacial water and therefore numerous natural processes. It has now been demonstrated that the surface of an electrolyte solution is stratified and consists of an ion-depleted outer surface and an ion-enriched subsurface layer, jointly determining the water interfacial structure.
Journal Article
Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method
by
Rantakari, Miitta
,
Biermann, Tobias
,
Vesala, Timo
in
Aerodynamics
,
Atmospheric methane
,
Atmospheric models
2018
Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2) and methane (CH4) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference between CO2 fluxes from shallower and deeper areas. We highlight that while all flux measurement methods have their pros and cons, it is important to carefully think about the chosen method and measurement interval, as well as their effects on the resulting flux.
Journal Article