Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2,218 result(s) for "Water-supply Remote sensing."
Sort by:
Assessment of Irrigation Water Performance in the Nile Delta Using Remotely Sensed Data
A comprehensive framework for irrigation water performance assessment (IWPA) based on satellite data was proposed. This framework consists of external IWPA (EIWPA) and internal IWPA (IIWPA). The EIWPA indicates the water supply as well as agricultural and economic performances. On the other hand, the IIWPA expresses the temporal and spatial performances of irrigation water use adequacy (PA), equity (PE), and dependability (PD) indicators. This framework was applied to the irrigation scheme of the Al-Qased canal in the Nile Delta, Egypt, during the winter between 2015 and 2016. The crop water requirements (ETc) were calculated using the Surface Energy Balance Algorithm for Land (SEBAL) model and Landsat 8 images. Three classes, from “good” to “poor,” to classify the EIWPA and IIWPA values were proposed. The EIWPA was classified as “poor” in irrigation efficiency (51.2%) due to the oversupply of irrigation water in relation to the ETc while the economic indicators showed that the net profit was 7.84% of the gross value of crop production. The PE, PD, and PA were classified as “fair,” which indicated a non-uniform irrigation water distribution between the head and tail branch canals. Moreover, the irrigation water was inadequate during the growing months and could not meet the ETc. The framework presented an efficient tool for the IWPA in terms of spatial, temporal, agricultural, and economic performances.
Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal
Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status. We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008. We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary). Poisson generalized additive models were fitted, allowing for the interaction between equivalent temperature [universal thermal climate index (UTCI)] and quartiles of urban greenness [classified using the Normalized Difference Vegetation Index (NDVI)] and proximity to water (≤ 4 km vs. > 4 km), while adjusting for potential confounders. The association between mortality and a 1°C increase in UTCI above the 99th percentile (24.8°C) was stronger for areas in the lowest NDVI quartile (14.7% higher; 95% CI: 1.9, 17.5%) than for areas in the highest quartile (3.0%; 95% CI: 2.0, 4.0%). In areas > 4 km from water, a 1°C increase in UTCI above the 99th percentile was associated with a 7.1% increase in mortality (95% CI: 6.2, 8.1%), whereas in areas ≤ 4 km from water, the estimated increase in mortality was only 2.1% (95% CI: 1.2, 3.0%). Urban green and blue appeared to have a mitigating effect on heat-related mortality in the elderly population in Lisbon. Increasing the amount of vegetation may be a good strategy to counteract the adverse effects of heat in urban areas. Our findings also suggest potential benefits of urban blue that may be present several kilometers from a body of water. Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W. 2016. Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): evidence from Lisbon, Portugal. Environ Health Perspect 124:927-934; http://dx.doi.org/10.1289/ehp.1409529.
Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling
Groundwater development across much of sub-Saharan Africa is constrained by a lack of knowledge on the suitability of aquifers for borehole construction. The main objective of this study was to map groundwater potential at the country-scale for Ghana to identify locations for developing new supplies that could be used for a range of purposes. Groundwater potential zones were delineated using remote sensing and geographical information system (GIS) techniques drawing from a database that includes climate, geology, and satellite data. Subjective scores and weights were assigned to each of seven key spatial data layers and integrated to identify groundwater potential according to five categories ranging from very good to very poor derived from the total percentage score. From this analysis, areas of very good groundwater potential are estimated to cover 689,680 ha (2.9 % of the country), good potential 5,158,955 ha (21.6 %), moderate potential 10,898,140 ha (45.6 %), and poor/very poor potential 7,167,713 ha (30 %). The results were independently tested against borehole yield data (2,650 measurements) which conformed to the anticipated trend between groundwater potential and borehole yield. The satisfactory delineation of groundwater potential zones through spatial modeling suggests that groundwater development should first focus on areas of the highest potential. This study demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the country-scale and suggests that similar methods could be applied across other African countries and regions.
Widespread global increase in intense lake phytoplankton blooms since the 1980s
Freshwater blooms of phytoplankton affect public health and ecosystem services globally 1 , 2 . Harmful effects of such blooms occur when the intensity of a bloom is too high, or when toxin-producing phytoplankton species are present. Freshwater blooms result in economic losses of more than US$4 billion annually in the United States alone, primarily from harm to aquatic food production, recreation and tourism, and drinking-water supplies 3 . Studies that document bloom conditions in lakes have either focused only on individual or regional subsets of lakes 4 – 6 , or have been limited by a lack of long-term observations 7 – 9 . Here we use three decades of high-resolution Landsat 5 satellite imagery to investigate long-term trends in intense summertime near-surface phytoplankton blooms for 71 large lakes globally. We find that peak summertime bloom intensity has increased in most (68 per cent) of the lakes studied, revealing a global exacerbation of bloom conditions. Lakes that have experienced a significant ( P  < 0.1) decrease in bloom intensity are rare (8 per cent). The reason behind the increase in phytoplankton bloom intensity remains unclear, however, as temporal trends do not track consistently with temperature, precipitation, fertilizer-use trends or other previously hypothesized drivers. We do find, however, that lakes with a decrease in bloom intensity warmed less compared to other lakes, suggesting that lake warming may already be counteracting management efforts to ameliorate eutrophication 10 , 11 . Our findings support calls for water quality management efforts to better account for the interactions between climate change and local hydrological conditions 12 , 13 . Analyses show that the peak intensity of summertime phytoplankton blooms has increased in 71 large lakes globally over the past three decades, revealing a worldwide exacerbation of bloom conditions.
Identification and mapping of groundwater recharge zones using multi influencing factor and analytical hierarchy process
The management of groundwater systems is essential for nations that rely on groundwater as the principal source of communal water supply (e.g., Mohmand District of Pakistan). The work employed Remote Sensing and GIS datasets to ascertain the groundwater recharge zones (GWRZ) in the Mohmand District of Pakistan. Subsequently, a sensitivity analysis was conducted to examine the impact of geology and hydrologic factors on the variability of the GWRZ. The GWRZ was determined by employing weighted overlay analysis on thematic maps derived from datasets about drainage density, slope, geology, rainfall, lineament density, land use/land cover, and soil types. The use of multi-criteria decision analysis (MCDA) involves the utilization of the multi-influencing factor (MIF) and analytical hierarchy procedure (AHP) to allocate weights to the selected influencing factors. The MIF data found that very high groundwater recharge spanned 1.20%, high zones covered 40.44%, moderate zones covered 50.81%, and low zones covered 7.54%. In comparison, the AHP technique results suggest that 1.81% of the whole area is very high, 33.26 is high, 55.01% is moderate, and 9.92% has low groundwater potential. The geospatial-assisted multi-influencing factor approach helps increase conceptual knowledge of groundwater resources and evaluate possible groundwater zones.
Constraints and potentials of future irrigation water availability on agricultural production under climate change
We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Groundwater Depletion in California’s Central Valley Accelerates During Megadrought
Groundwater provides nearly half of irrigation water supply, and it enables resilience during drought, but in many regions of the world, it remains poorly, if at all managed. In heavily agricultural regions like California’s Central Valley, where groundwater management is being slowly implemented over a 27-year period that began in 2015, groundwater provides two-thirds or more of irrigation water during drought, which has led to falling water tables, drying wells, subsiding land, and its long-term disappearance. Here we use nearly two decades of observations from NASA’s GRACE satellite missions and show that the rate of groundwater depletion in the Central Valley has been accelerating since 2003 (1.86 km3 /yr, 1961-2021; 2.41 km3 /yr, 2003- 2021; 8.58 km3 /yr, 2019-2021), a period of megadrought in southwestern North America. Results suggest the need for expedited implementation of groundwater management in the Central Valley to ensure its availability during the increasingly intense droughts of the future.
Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016
The contiguous United States (CONUS), especially the West, faces challenges of increasing water stress and uncertain impacts of climate change. The historical information of surface water body distribution, variation, and multidecadal trends documented in remote-sensing images can aid in water-resource planning and management, yet is not well explored. Here, we detected open-surface water bodies in all Landsat 5, 7, and 8 images (∼370,000 images, >200 TB) of the CONUS and generated 30-meter annual water body frequency maps for 1984–2016. We analyzed the interannual variations and trends of year-long water body area, examined the impacts of climatic and anthropogenic drivers on water body area dynamics, and explored the relationships between water body area and land water storage (LWS). Generally, the western half of the United States is prone to water stress, with small water body area and large interannual variability. During 1984–2016, water-poor regions of the Southwest and Northwest had decreasing trends in water body area, while water-rich regions of the Southeast and far north Great Plains had increasing trends. These divergent trends,mainly driven by climate, enlarged water-resource gaps and are likely to continue according to climate projections. Water body area change is a good indicator of LWS dynamics in 58% of the CONUS. Following the 2012 prolonged drought, LWS in California and the southern Great Plains had a larger decrease than surface water body area, likely caused by massive groundwater withdrawals. Our findings provide valuable information for surface water-resource planning and management across the CONUS.
High-resolution mapping of global surface water and its long-term changes
A freely available dataset produced from three million Landsat satellite images reveals substantial changes in the distribution of global surface water over the past 32 years and their causes, from climate change to human actions. A moving picture of Earth's surface waters The distribution of surface water has been mapped globally, and local-to-regional studies have tracked changes over time. But to date, there has been no global and methodologically consistent quantification of changes in surface water over time. Jean-François Pekel and colleagues have analysed more than three million Landsat images to quantify month-to-month changes in surface water at a resolution of 30 metres and over a 32-year period. They find that surface waters have declined by almost 90,000 square kilometres—largely in the Middle East and Central Asia—but that surface waters equivalent to about twice that area have been created elsewhere. Drought, reservoir creation and water extraction appear to have driven most of the changes in surface water over the past decades. The location and persistence of surface water (inland and coastal) is both affected by climate and human activity 1 and affects climate 2 , 3 , biological diversity 4 and human wellbeing 5 , 6 . Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions 7 , statistical extrapolation of regional data 8 and satellite imagery 9 , 10 , 11 , 12 , but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images 13 , we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change 14 is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal 15 , 16 . Losses in Australia 17 and the USA 18 linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.