Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
78 result(s) for "Wind power Denmark."
Sort by:
Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark
Operational since 2004, the National Centre for Wind Turbines at Høvsøre, Denmark has become a reference research site for wind-power meteorology. In this study, we review the site, its instrumentation, observations, and main research programs. The programs comprise activities on, inter alia, remote sensing, where measurements from lidars have been compared extensively with those from traditional instrumentation on masts. In addition, with regard to wind-power meteorology, wind-resource methodologies for wind climate extrapolation have been evaluated and improved. Further, special attention has been given to research on boundary-layer flow, where parametrizations of the length scale and wind profile have been developed and evaluated. Atmospheric turbulence studies are continuously conducted at Høvsøre, where spectral tensor models have been evaluated and extended to account for atmospheric stability, and experiments using microscale and mesoscale numerical modelling.
Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review
In recent years, the sustainability of wind power has been called into question because there are currently no truly sustainable solutions to the problem of how to deal with the non-biodegradable fibre-reinforced polymer (FRP) composite wind blades (sometimes referred to as “wings”) that capture the wind energy. The vast majority of wind blades that have reached their end-of-life (EOL) currently end up in landfills (either in full-sized pieces or pulverized into smaller pieces) or are incinerated. The problem has come to a head in recent years since many countries (especially in the EU) have outlawed, or expect to outlaw in the near future, one or both of these unsustainable and polluting disposal methods. An increasing number of studies have addressed the issue of EOL blade “waste”; however, these studies are generally of little use since they make predictions that do not account for the manner in which wind blades are decommissioned (from the time the decision is made to retire a turbine (or a wind farm) to the eventual disposal or recycling of all of its components). This review attempts to lay the groundwork for a better understanding of the decommissioning process by defining how the different EOL solutions to the problem of the blade “waste” do or do not lead to “sustainable decommissioning”. The hope is that by better defining the different EOL solutions and their decommissioning pathways, a more rigorous research base for future studies of the wind blade EOL problem will be possible. This paper reviews the prior studies on wind blade EOL and divides them into a number of categories depending on the focus that the original authors chose for their EOL assessment. This paper also reviews the different methods chosen by researchers to predict the quantities of future blade waste and shows that depending on the choice of method, predictions can be different by orders of magnitude, which is not good as this can be exploited by unscrupulous parties. The paper then reviews what different researchers define as the “recycling” of wind blades and shows that depending on the definition, the percentage of how much material is actually recycled is vastly different, which is also not good and can be exploited by unscrupulous parties. Finally, using very recent proprietary data (December 2022), the paper illustrates how the different definitions and methods affect predictions on global EOL quantities and recycling rates.
On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50-80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200-300 m and considering only wind speeds above 3 m s-¹ at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.
Impact of Long-Term Exposure to Wind Turbine Noise on Redemption of Sleep Medication and Antidepressants: A Nationwide Cohort Study
Noise from wind turbines (WTs) is associated with annoyance and, potentially, sleep disturbances. Our objective was to investigate whether long-term WT noise (WTN) exposure is associated with the redemption of prescriptions for sleep medication and antidepressants. For all Danish dwellings within a radius of [Formula: see text] heights and for 25% of randomly selected dwellings within a radius of [Formula: see text] heights, we estimated nighttime outdoor and low-frequency (LF) indoor WTN, using information on WT type and simulated hourly wind. During follow-up from 1996 to 2013, 68,696 adults redeemed sleep medication and 82,373 redeemed antidepressants, from eligible populations of 583,968 and 584,891, respectively. We used Poisson regression with adjustment for individual and area-level covariates. Five-year mean outdoor nighttime WTN of [Formula: see text] was associated with a hazard ratio (HR) = 1.14 [95% confidence interval (CI]: 0.98, 1.33) for sleep medication and HR = 1.17 (95% CI: 1.01, 1.35) for antidepressants (compared with exposure to WTN of [Formula: see text]). We found no overall association with indoor nighttime LF WTN. In age-stratified analyses, the association with outdoor nighttime WTN was strongest among persons [Formula: see text] of age, with HRs (95% CIs) for the highest exposure group ([Formula: see text]) of 1.68 (1.27, 2.21) for sleep medication and 1.23 (0.90, 1.69) for antidepressants. For indoor nighttime LF WTN, the HRs (95% CIs) among persons [Formula: see text] of age exposed to [Formula: see text] were 1.37 (0.81, 2.31) for sleep medication and 1.34 (0.80, 2.22) for antidepressants. We observed high levels of outdoor WTN to be associated with redemption of sleep medication and antidepressants among the elderly, suggesting that WTN may potentially be associated with sleep and mental health. https://doi.org/10.1289/EHP3909.
The Wind Parks Distorted Development in Greek Islands—Lessons Learned and Proposals Toward Rational Planning
The Greek islands have been blessed with excellent wind potential, with hundreds of sites featuring annual average wind velocity higher than 8–10 m/s. Due to specific regulations in the legal framework, some GWs of wind parks have been submitted since the late 2000s by a small number of large investors in the Greek islands, favoring the creation of energy monopolies and imposing serious impacts on natural ecosystems and existing human activities. These projects have caused serious public reactions against renewables, considerably decelerating the energy transition. This article aims to summarize the legal points in the Greek framework that caused this distorted approach and present the imposed potential social and environmental impacts. Energy monopolies distort the electricity wholesale market and lead to energy poverty and a low standard of living by imposing higher electricity procurement prices on the final users. The occupation of entire insular geographical territories by large wind park projects causes important deterioration of the natural environment, which, in turn, leads to loss of local occupations, urbanization, and migration by affecting negatively the countryside life. Serious concerns from the local population are clearly revealed through an accomplished statistical survey as well as a clear intention to be engaged in future wind park projects initiated by local stakeholders. The article is integrated with specific proposed measures and actions toward the rational development of renewable energy projects. These refer mainly on the formulation of a truly supportive and just legal framework aiming at remedying the currently formulated situation and the strengthening of the energy communities’ role, such as through licensing priorities, funding mechanisms, and tools, as well as additional initiatives such as capacity-building activities, pilot projects, and extensive activation of local citizens. Energy communities and local stakeholders should be involved in the overall process, from the planning to the construction and operation phase.
Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions
Very-short-term probabilistic forecasts, which are essential for an optimal management of wind generation, ought to account for the non-linear and double-bounded nature of that stochastic process. They take here the form of discrete—continuous mixtures of generalized logit—normal distributions and probability masses at the bounds. Both auto-regressive and conditional parametric auto-regressive models are considered for the dynamics of their location and scale parameters. Estimation is performed in a recursive least squares framework with exponential forgetting. The superiority of this proposal over classical assumptions about the shape of predictive densities, e.g. normal and beta, is demonstrated on the basis of 10-min-ahead point and probabilistic forecasting at the Horns Rev wind farm in Denmark.
Offshore Wind Farm Supply Chains and Regional Development: The Role of Ports in Economic and Logistical Growth in the Central Baltic Region
The development of offshore wind energy has emerged as a key driver of economic growth and energy transition in Europe, with the Baltic Sea region playing a crucial role in this transformation. This paper examines the impact of offshore wind farm (OWF) supply chains on regional economic development, focusing on the strategic role of ports in facilitating these operations. Particular emphasis is placed on Port Ustka, which has been identified as a potential logistics and service hub for offshore wind projects in Poland’s Exclusive Economic Zone. The study explores the integration of local ports into offshore wind supply chains and their contribution to industrial development, job creation, and infrastructure modernization. Through an analysis of infrastructure parameters, logistical capabilities, and economic impacts, the paper assesses the feasibility of Port Ustka as a service base for major offshore wind projects, such as Baltica 2 and 3. The findings highlight the importance of port infrastructure investments, supply chain optimization, and policy support in maximizing the economic benefits of offshore wind development. By evaluating the challenges and opportunities associated with offshore wind logistics, this paper provides strategic insights for policymakers, investors, and industry stakeholders. The research underscores the necessity of modernizing port facilities, improving transport connections, and fostering local supply chain participation to enhance the efficiency and sustainability of offshore wind operations in the Central Baltic Region.
Modal Aggregation Technique to Check the Accuracy of the Model Reduction of Array Cable Systems in Offshore Wind Farms
The need for a verification method for aggregation techniques for passive electrical systems is necessary as power systems increase in complexity. Model reduction is crucial to increase the number of simulations necessary to ensure a stable and reliable design of power systems. This paper presents a novel modal domain-based technique to identify the best aggregation technique for a given system and to indicate the validity of the aggregation. This is done by benchmarking different aggregation techniques and using the dominant contribution factor ratio as a validity parameter. The different aggregation techniques are compared via time-domain simulations against the full detailed model. It is found that (1) the power loss aggregation technique is the most precise when it weighs the equivalent impedances of the parallel feeders, (2) unequal current generation does not impact the aggregation accuracy, (3) individual string aggregation provides the best results for dynamic simulations, and (4) the validity of aggregation decreases as frequency or cable length increases.