Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,810 result(s) for "Wind variability"
Sort by:
Hourly Variation of Wind Speeds in the Philippines and Its Potential Impact on the Stability of the Power System
Wind energy development has been limited by concerns associated to the varying features in wind speed which tends to destabilize the power system. This study aims to clarify the variability of winds within a day in the Philippines, specifically the hourly changes of onshore horizontal winds at 100-m hub-heights. A whole one-year experiment using the Weather Research and Forecasting model shows that onshore wind speeds decrease during the transitional hours between land breeze and sea breeze. The decreases in wind speed are most significant over coastal regions with high sloping topography. The extreme decreases in wind speed during morning hours, due to the natural processes, are found to often occur at the same time as the extreme electricity undersupply caused by the morning increase in energy demand. This result warns that the power system stability in the Philippines may become more sensitive to the variability of wind as the share of wind energy generation increases in the future. The findings of this study can contribute to promote sustainability in the operation of existing wind-reliant power systems and planning of future wind energy developments.
Offshore Wind Power Resource Assessment in the Gulf of North Suez
Growing population, industrialization, and power requirements are adversely affecting the environment through increased greenhouse gases resulting from fossil fuel burning. Global greenhouse gas mitigation targets have led nations to promote clean and self-renewable sources of energy to address this environmental issue. Offshore wind power resources are relatively more attractive due to high winds, less turbulence, minimal visualization effects, and no interaction of infrastructure. The present study aims at conducting an offshore wind power resource assessment (OWPRA) at some locations in the Gulf of North Suez. For this purpose, the long-term hourly mean wind speed (WS) and wind direction above mean sea level (AMSL), as well as temperature and pressure data near the surface, are used. The data is obtained from ERA5 (fifth generation global climate reanalysis) at six (L1–L6) chosen offshore locations. The data covers a period of 43 years, between 1979 and 2021. The WS and direction are provided at 100 m AMSL, while temperature and pressure are available near water-surface level. At the L1 to L6 locations, the log-term mean WS and wind power density (WPD) values are found to be 7.55 m/s and 370 W/m2, 6.37 m/s and 225 W/m2, 6.91 m/s and 281 W/m2, 5.48 m/s and 142 W/m2, 4.30 m/s and 77 W/m2, and 5.03 and 115 W/m2 and at 100 m AMSL, respectively. The higher magnitudes of monthly and annual windy site identifier indices (MWSI and AWSI) of 18.68 and 57.41 and 12.70 and 42.94 at the L1 and L3 sites, and generally lower values of wind variability indices, are indicative of a favorable winds source, which is also supported by higher magnitudes of mean WS, WPD, annual energy yields, plant capacity factors, and wind duration at these sites. The cost of energy for the worst and the best cases are estimated as 10.120 USD/kWh and 1.274 USD/kWh at the L5 and L1 sites, corresponding to wind turbines WT1 and WT4. Based on this analysis, sites L1, L3, and L2 are recommended for wind farm development in order of preference. The wind variability and windy site identifier indices introduced will help decision-makers in targeting potential windy sites with more confidence.
The North Pacific Pacemaker Effect on Historical ENSO and Its Mechanisms
Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.
Multi-scale variability of southeastern Australian wind resources
There is growing need to understand wind variability in various regions throughout the world, including in relation to wind energy resources. Here we examine wind variability in southeastern Australia in relation to the El Niño–Southern Oscillation (ENSO) as a dominant mode of atmospheric and oceanic variability for this region. The analysis covers variability from seasonal to diurnal timescales for both land and maritime regions of relevance to wind energy generation. Wind speeds were obtained from the 12 km grid length Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) reanalysis, with a focus on wind at a typical hub-height of 100 m above the surface. Results show spatiotemporal variations in how ENSO influences wind speeds, including consistency in these variations over the wind speed distribution. For example, ENSO-related variations in mean winds were mostly similar in sign to ENSO-related variations in weak winds, noting uncertainties for strong winds given available data. Diurnal variability in wind speed was larger for summer than winter and for land than ocean regions, with the diurnal cycle maxima typically occurring in the afternoon and evening rather than morning, plausibly associated with sensible heating of air above land following solar radiation. Localised variations in the diurnal cycle were identified around mountains and coastal regions. The results show some indication of ENSO influences on the diurnal variability. These findings are intended to help enhance scientific understanding on wind variability, including in relation to ENSO, and to contribute information towards practical guidance in planning such as for use in energy sector applications.
Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe
The high temporal variability of wind power generation represents a major challenge for the realization of a sustainable energy supply. Large backup and storage facilities are necessary to secure the supply in periods of low renewable generation, especially in countries with a high share of renewables. We show that strong climate change is likely to impede the system integration of intermittent wind energy. To this end, we analyze the temporal characteristics of wind power generation based on high-resolution climate projections for Europe and uncover a robust increase of backup energy and storage needs in most of Central, Northern and North-Western Europe. This effect can be traced back to an increase of the likelihood for long periods of low wind generation and an increase in the seasonal wind variability.
Low-wind climatology (1979–2018) over Europe from ERA5 reanalysis
Research on wind speed characteristics is of interest for many disciplines from renewable energy to ecology. Whereas mean values and trends are commonly studied, less attentions is paid to the evaluation of other features such as low-wind conditions. However, there is no clear definition of “low-wind” on the literature. Here we propose the Beaufort scale to characterize low-wind values over Europe through a fixed threshold of 3.3 m/s (“light breeze\" category). Climatological (1979–2018) assessment is performed using ERA5 reanalysis hourly data. The limited amount of observational stations indicate a 40-year averaged amount of around 3500 low-wind hours/year, comparable to the corresponding ERA5 reanalysis cells, which shows severe limitations over mountainous areas. The European domain features a strong north–south low-wind hours gradient. Remarkable patterns are obtained over coasts and complex orography regions. Seasonal low-wind variability range around 20–25% for most of the regions, and interannual coefficient of variability from 0.05 to 0.17. Oceanic regions present smaller low-wind values than land areas, with Atlantic and Mediterranean regions behaving differently. The largest annual spells (consecutive) hourly low-wind episodes are within the range from 5 to 10 days, (from 120 to 240 h) over many land areas. Annual mean hourly wind spells typically extend from 15 to 25 h, with more than 200 episodes.
The South Pacific Meridional Mode
In this study, the authors investigate the connection between the South Pacific atmospheric variability and the tropical Pacific climate in models of different degrees of coupling between the atmosphere and ocean. A robust mode of variability, defined as the South Pacific meridional mode (SPMM), is identified in a multimodel ensemble of climate model experiments where the atmosphere is only thermodynamically coupled to a slab ocean mixed layer. The physical interpretation of the SPMM is nearly identical to the North Pacific meridional mode (NPMM) with the off-equatorial southeast trade wind variability altering the latent heat flux and sea surface temperature (SST) and initiating a wind–evaporation–SST feedback that propagates signals into the tropics. The authors also show that a positive cloud feedback plays a role in the development of this mode, but this effect is model dependent. While physically analogous to the NPMM, the SPMM has a stronger expression in the equatorial Pacific and directly perturbs the zonal gradients of SST and sea level pressure (SLP) on the equator, thus leading to ENSO-like variability despite the lack of ocean–atmosphere dynamical coupling. Further analysis suggests that the SPMM is also active in fully coupled climate models and observations. This study highlights the important role of the Southern Hemisphere in tropical climate variability and suggests that including observations from the data-poor South Pacific could improve the ENSO predictability.
Decadal Variability of Ice‐Shelf Melting in the Amundsen Sea Driven by Sea‐Ice Freshwater Fluxes
The ice streams flowing into the Amundsen Sea, West Antarctica, are losing mass due to changes in oceanic basal melting of their floating ice shelves. Rapid ice‐shelf melting is sustained by the delivery of warm Circumpolar Deep Water to the ice‐shelf cavities, which is first supplied to the continental shelf by an undercurrent that flows eastward along the shelf break. Temporal variability of this undercurrent controls ice‐shelf basal melt variability. Recent work shows that on decadal timescales the undercurrent variability opposes surface wind variability. Using a regional model, we show that undercurrent variability is induced by sea‐ice freshwater fluxes, particularly those north of the shelf break, which affect the cross‐shelf break density gradient. This sea‐ice variability is linked to tropical Pacific variability impacting atmospheric conditions over the Amundsen Sea. Ice‐shelf melting also feeds back onto the undercurrent by affecting the on‐shelf density, thereby influencing shelf‐break density gradient anomalies. Plain Language Summary The glaciers that flow toward the Amundsen Sea, West Antarctica, are losing ice faster than most others about the continent. Once these glaciers reach the coast, they extend out onto the ocean surface, forming ice shelves. The rapid loss of ice is caused by changes in melting by relatively warm ocean waters beneath the floating ice shelves. In the Amundsen Sea, a deep ocean current is responsible for delivering warm water from the deep ocean to the ice shelves. We present model results that show that this deep current varies on decadal timescales as a consequence of systematic sea‐ice melt and formation patterns. A faster current drives more rapid ice shelf melting which, via a feedback process, further accelerates the current. Climate variability originating in the tropical Pacific Ocean is responsible for the variability in the sea‐ice, and is therefore also responsible for the effects on melting of the ice shelves. Key Points In the Amundsen Sea decadal variability of an undercurrent flowing along the shelf break drives decadal variability in ice‐shelf basal melt Sea‐ice freshwater fluxes and positive feedbacks from ice‐shelf basal melt drive the undercurrent variability Tropical Pacific teleconnections induce atmospheric anomalies over the Amundsen Sea which drive the sea‐ice freshwater flux variability
Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere
This study examines the nature of boreal summer subseasonal atmospheric variability based on the new NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the period 1979–2010. An analysis of the June, July, and August subseasonal 250-hPa meridionalν-wind anomalies shows distinct Rossby wave–like structures that appear to be guided by the mean jets. On monthly subseasonal time scales, the leading waves [the first 10 rotated empirical orthogonal functions (REOFs) of the 250-hPaνwind] explain about 50% of the Northern Hemisphereν-wind variability and account for more than 30% (60%) of the precipitation (surface temperature) variability over a number of regions of the northern middle and high latitudes, including the U.S. northern Great Plains, parts of Canada, Europe, and Russia. The first REOF in particular consists of a Rossby wave that extends across northern Eurasia where it is a dominant contributor to monthly surface temperature and precipitation variability and played an important role in the 2003 European and 2010 Russian heat waves. While primarily subseasonal in nature, the Rossby waves can at times have a substantial seasonal mean component. This is exemplified by REOF 4, which played a major role in the development of the most intense anomalies of the U.S. 1988 drought (during June) and the 1993 flooding (during July), though differed in the latter event by alsomaking an important contribution to the seasonal mean anomalies. A stationary wave model (SWM) is used to reproduce some of the basic features of the observed waves and provide insight into the nature of the forcing. In particular, the responses to a set of idealized forcing functions are used to map the optimal forcing patterns of the leading waves. Also, experiments to reproduce the observed waves with the SWM using MERRA based estimates of the forcing indicate that the wave forcing is dominated by submonthly vorticity transients.
Mean, Variability, and Trend of Southern Ocean Wind Stress
The Southern Ocean (SO) surface westerly wind stress plays a fundamental role in driving the Antarctic Circumpolar Current and the global meridional overturning circulation. Here, the authors investigate the contributions of atmospheric wind fluctuations to the mean, variability, and trend of SO wind stress over the last four decades using NCEP reanalysis and ERA-Interim products. Including wind variability at synoptic frequencies (2–8 days) and higher in the stress calculation is found to increase the strength of the mean SO wind stress by almost 40% in both reanalysis products. The southern annular mode index is found to be a good indicator for the strength of the mean wind and mean wind stress, but not as good an indicator for wind fluctuations, at least for the chosen study period. Large discrepancies between reanalysis products emerge regarding the contributions of wind fluctuations to the strengthening trend of SO wind stress. Between one-third and one-half of the stress trend in NCEP can be explained by the increase in the intensity of wind fluctuations, while the stress trend in ERA-Interim is due entirely to the increasing strength of the mean westerly wind. This trend discrepancy may have important climatic implications since the sensitivity of SO circulation to wind stress changes depends strongly on how these stress changes are brought about. Given the important role of wind fluctuations in shaping the SO wind stress, studies of the SO response to wind stress changes need to account for changes of wind fluctuations in the past and future.